Skip to main content

Anomalies endocriniennes en réanimation

  • Chapter
Désordres métaboliques et réanimation

Part of the book series: Le point sur ... ((POINT))

  • 962 Accesses

Résumé

Les patients atteints d’un choc septique, d’un polytraumatisme ou de toute autre pathologie aiguë mettant en jeu le pronostic vital vont développer des défaillances d’organe même si ceux-ci n’ont pas été directement lésés lors du stress initial. Ces défaillances sont traditionnellement attribuées aux effets de médiateurs pro-inflammatoires qui induisent des changements macro- et microcirculatoires responsables d’hypoxie tissulaire et de dégâts cellulaires. Cependant, si les choses étaient aussi simples, ces défaillances d’organe devraient être irréversibles, notamment pour les organes á faible capacité de régénération tels que le rein. En fait, si l’insuffisance rénale nécessite fréquemment un support par épuration extrarénale, elle évolue á long terme vers une restitution « ad integrum » de la fonction rénale quand le patient survit. Il est également remarquable que les organes lésés fonctionnellement restent quasiment normaux histologiquement, notamment en termes d’architecture et de structure tissulaire avec très peu de phénomènes apoptotiques ou de nécrose cellulaire. Ces constatations plaident en faveur d’une atteinte fonctionnelle plus que structurelle des organes. Les cellules entrent dans un état d’hibernation qui permet de préserver l’organe en altérant certes sa fonction (1). Cet état « d’endormissement métabolique » est directement attribué á la réponse inflammatoire ainsi qu’á la réponse neuro-endocrine qui sont toutes deux fortement intriquées.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Singer M, De Santis V, Vitale D et al. (2004) Multiorgan failure is an adaptive, endocrine-mediated, metabolic response to overwhelming systemic inflammation. Lancet 364: 545–8

    Article  PubMed  Google Scholar 

  2. Reid CL, Campbell IT, Little RA (2004) Muscle wasting and energy balance in critical illness. Clin Nutr 23: 273–80

    Article  PubMed  Google Scholar 

  3. Van den Berghe G (2000) Novel insights into the neuroendocrinology of critical illness. Eur J Endocrinol 143: 1–13

    Article  PubMed  Google Scholar 

  4. Hermansson M, Wickelgren RB, Hammarqvist F et al. (1997) Measurement of human growth hormone receptor messenger ribonucleic acid by a quantitative polymerase chain reaction-based assay: demonstration of reduced expression after elective surgery. J Clin Endocrinol Metab 82: 421–8

    Article  PubMed  CAS  Google Scholar 

  5. Vanhorebeek I, Van den Berghe G (2004) Hormonal and metabolic strategies to attenuate catabolism in critically ill patients. Curr Opin Pharmacol 4: 621–8

    Article  PubMed  CAS  Google Scholar 

  6. Ross R, Miell J, Freeman E et al. (1991) Critically ill patients have high basal growth hormone levels with attenuated oscillatory activity associated with low levels of insulin-like growth factor-I. Clin Endocrinol (Oxf) 35: 47–54

    Article  CAS  Google Scholar 

  7. Naito Y, Fukata J, Tamai S et al. (1991) Biphasic changes in hypothalamo-pituitary-adrenal function during the early recovery period after major abdominal surgery. J Clin Endocrinol Metab 73: 111–7

    Article  PubMed  CAS  Google Scholar 

  8. Hoen S, Mazoit JX, Asehnoune K et al. (2005) Hydrocortisone increases the sensitivity to alpha1-adrenoceptor stimulation in humans following hemorrhagic shock. Crit Care Med 33: 2737–43

    Article  PubMed  CAS  Google Scholar 

  9. Annane D, Sebille V, Troche G et al. (2000) A 3-level prognostic classification in septic shock based on cortisol levels and cortisol response to corticotropin. Jama 283: 1038–45

    Article  PubMed  CAS  Google Scholar 

  10. Marik PE, Pastores SM, Annane D et al. (2008) Recommendations for the diagnosis and management of corticosteroid insufficiency in critically ill adult patients: consensus statements from an international task force by the American College of Critical Care Medicine. Crit Care Med 36: 1937–49

    Article  PubMed  CAS  Google Scholar 

  11. Prigent H, Maxime V, Annane D (2004) Science review: mechanisms of impaired adrenal function in sepsis and molecular actions of glucocorticoids. Crit Care 8: 243–52

    Article  PubMed  Google Scholar 

  12. Vermes I, Beishuizen A, Hampsink RM et al. (1995) Dissociation of plasma adrenocorticotropin and cortisol levels in critically ill patients: possible role of endothelin and atrial natriuretic hormone. J Clin Endocrinol Metab 80: 1238–42

    Article  PubMed  CAS  Google Scholar 

  13. Van den Berghe G, de Zegher F, Wouters P et al. (1995) Dehydroepiandrosterone sulphate in critical illness: effect of dopamine. Clin Endocrinol (Oxf) 43: 457–63

    Article  Google Scholar 

  14. Arem R, Wiener GJ, Kaplan SG et al. (1993) Reduced tissue thyroid hormone levels in fatal illness. Metabolism 42: 1102–8

    Article  PubMed  CAS  Google Scholar 

  15. Fliers E, Wiersinga WM, Swaab DF (1998) Physiological and pathophysiological aspects of thyrotropin-releasing hormone gene expression in the human hypothalamus. Thyroid 8: 921–8

    Article  PubMed  CAS  Google Scholar 

  16. Guo H, Calkins JH, Sigel MM et al. (1990) Interleukin-2 is a potent inhibitor of Leydig cell steroidogenesis. Endocrinology 127: 1234–9

    Article  PubMed  CAS  Google Scholar 

  17. Van den Berghe G, de Zegher F, Lauwers P et al. (1994) Luteinizing hormone secretion and hypoandrogenaemia in critically ill men: effect of dopamine. Clin Endocrinol (Oxf) 41: 563–9

    Article  Google Scholar 

  18. Van den Berghe G (2003) Endocrine evaluation of patients with critical illness. Endocrinol Metab Clin North Am 32: 385–410

    Article  PubMed  Google Scholar 

  19. Annane D, Sebille V, Charpentier C et al. (2002) Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. JAMA 288: 862–71

    Article  PubMed  CAS  Google Scholar 

  20. Hoen S, Asehnoune K, Brailly-Tabard S et al. (2002) Cortisol response to corticotropin stimulation in trauma patients: influence of hemorrhagic shock. Anesthesiology 97: 807–13

    Article  PubMed  CAS  Google Scholar 

  21. Hamrahian AH, Oseni TS, Arafah BM (2004) Measurements of serum free cortisol in critically ill patients. N Engl J Med 350: 1629–38

    Article  PubMed  CAS  Google Scholar 

  22. Jabre P, Combes X, Lapostolle F et al. (2009) Etomidate versus ketamine for rapid sequence intubation in acutely ill patients: a multicentre randomised controlled trial. Lancet 374: 293–300

    Article  PubMed  CAS  Google Scholar 

  23. Cuthbertson BH, Sprung CL, Annane D et al. (2009) The effects of etomidate on adrenal responsiveness and mortality in patients with septic shock. Intensive Care Med 35: 1868–76

    Article  PubMed  CAS  Google Scholar 

  24. Vinclair M, Broux C, Faure P et al. (2008) Duration of adrenal inhibition following a single dose of etomidate in critically ill patients. Intensive Care Med 34: 714–9

    Article  PubMed  Google Scholar 

  25. Schlienger JL, Sapin R, Capgras T et al. (1991) Evaluation of thyroid function after myocardial infarction. Ann Endocrinol (Paris) 52: 283–8

    CAS  Google Scholar 

  26. Mesotten D, Swinnen JV, Vanderhoydonc F et al. (2004) Contribution of circulating lipids to the improved outcome of critical illness by glycemic control with intensive insulin therapy. J Clin Endocrinol Metab 89: 219–26

    Article  PubMed  CAS  Google Scholar 

  27. Takala J, Ruokonen E, Webster NR et al. (1999) Increased mortality associated with growth hormone treatment in critically ill adults. N Engl J Med 341: 785–92

    Article  PubMed  CAS  Google Scholar 

  28. Duska F, Fric M, Waldauf P et al. (2008) Frequent intravenous pulses of growth hormone together with glutamine supplementation in prolonged critical illness after multiple trauma: effects on nitrogen balance, insulin resistance, and substrate oxidation. Crit Care Med 36: 1707–13

    Article  PubMed  CAS  Google Scholar 

  29. Bettendorf M, Schmidt KG, Grulich-Henn J et al. (2000) Tri-iodothyronine treatment in children after cardiac surgery: a double-blind, randomised, placebo-controlled study. Lancet 356: 529–34

    Article  PubMed  CAS  Google Scholar 

  30. Dimmick S, Badawi N, Randell T (2004) Thyroid hormone supplementation for the prevention of morbidity and mortality in infants undergoing cardiac surgery. Cochrane Database Syst Rev CD004220

    Google Scholar 

  31. Van den Berghe G, Wouters P, Weekers F et al. (1999) Reactivation of pituitary hormone release and metabolic improvement by infusion of growth hormone-releasing peptide and thyrotropin-releasing hormone in patients with protracted critical illness. J Clin Endocrinol Metab 84: 1311–23

    Article  PubMed  Google Scholar 

  32. Ferrando AA, Sheffield-Moore M, Wolf SE et al. (2001) Testosterone administration in severe burns ameliorates muscle catabolism. Crit Care Med 29: 1936–42

    Article  PubMed  CAS  Google Scholar 

  33. Demling RH (1999) Comparison of the anabolic effects and complications of human growth hormone and the testosterone analog, oxandrolone, after severe burn injury. Burns 25: 215–21

    Article  PubMed  CAS  Google Scholar 

  34. Gee AC, Sawai RS, Differding J et al. (2008) The influence of sex hormones on coagulation and inflammation in the trauma patient. Shock 29: 334–41

    PubMed  CAS  Google Scholar 

  35. Sprung CL, Annane D, Keh D et al. (2008) Hydrocortisone therapy for patients with septic shock. N Engl J Med 358: 111–24

    Article  PubMed  CAS  Google Scholar 

  36. Annane D, Bellissant E, Bollaert PE et al. (2009) Corticosteroids in the treatment of severe sepsis and septic shock in adults: a systematic review. JAMA 301: 2362–75

    Article  PubMed  CAS  Google Scholar 

  37. Van den Berghe G, Wouters P, Weekers F et al. (2001) Intensive insulin therapy in the critically ill patients. N Engl J Med 345: 1359–67

    Article  PubMed  Google Scholar 

  38. Van den Berghe G, Wilmer A, Hermans G et al. (2006) Intensive insulin therapy in the medical ICU. N Engl J Med 354: 449–61

    Article  PubMed  Google Scholar 

  39. Brunkhorst FM, Engel C, Bloos F et al. (2008) Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med 358: 125–39

    Article  PubMed  CAS  Google Scholar 

  40. Finfer S, Chittock DR, Su SY et al. (2009) Intensive versus conventional glucose control in critically ill patients. N Engl J Med 360: 1283–97

    Article  PubMed  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag France

About this chapter

Cite this chapter

Roquilly, A., Asehnoune, K. (2011). Anomalies endocriniennes en réanimation. In: Désordres métaboliques et réanimation. Le point sur .... Springer, Paris. https://doi.org/10.1007/978-2-287-99027-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-2-287-99027-4_18

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-287-99026-7

  • Online ISBN: 978-2-287-99027-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics