Skip to main content

Abstrait

La responsabilité de certains médicaments dans la cancérogenèse est clairement établie. Dans bon nombre de cas, il s’agit de cancers induits chez l’adulte par des traitements reçus in utero ou au cours de l’enfance. Le rôle favorisant des facteurs génétiques est encore mal évalué, mais fait l’objet d’une recherche active.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Herbst AL, Ulfelder H, Poskanzer DC (1971) Adenocarcinoma of the vagina. Association of maternal stilbestrol therapy with tumor appearance in young women. N Engl J Med 284: 878–81

    PubMed  CAS  Google Scholar 

  2. Benhammou V, Warszawski J, Bellec S et al. (2008) Incidence of cancer in children perinatally exposed to nucleoside reverse transcriptase inhibitors. The ARNS French Pediatric Cohort. AIDS: in press

    Google Scholar 

  3. Le Deley MC, Leblanc T, Shamsaldin A et al. (2003) Risk of secondary leukemia after a solid tumor in childhood according to the dose of epipodophyllotoxins and anthracyclines: a case-control study by the Société Française d’Oncologie Pédiatrique. J Clin Oncol 21: 1074–81

    Article  PubMed  CAS  Google Scholar 

  4. Terracini B, Coebergh JW, Gatta G et al. (2001) Childhood cancer survival in Europe: an overview. Eur J Cancer 37: 810–6

    Article  PubMed  CAS  Google Scholar 

  5. Desandes E, Berger C, Iron I et al. (2008) Childhood cancer survival in France, 1990–1999. Eur J Cancer 44: 205–15

    Article  PubMed  Google Scholar 

  6. Shamsaldin A, Grimaud E, Hardiman C et al. (1998) Dose distribution throughout the body from radiotherapy for Hodgkin’s disease in childhood. Radiother Oncol 49: 85–90

    Article  PubMed  CAS  Google Scholar 

  7. Francois P, Beurtheret C, Dutreix A et al. (1988) A mathematical child phantom for the calculation of dose to the organs at risk. Med Phys 15: 328–33

    Article  PubMed  CAS  Google Scholar 

  8. Diallo I, Lamon A, Shamsaldin A et al. (1996) Estimation of the radiation dose delivered to any point outside the target volume per patient treated with external beam radiotherapy. Radiother Oncol 38: 269–71

    Article  PubMed  CAS  Google Scholar 

  9. Ligot L, Diallo I, Shamsaldin A et al. (1998) Individualized phantom based on CT slices and auxological data (ICTA) for dose estimations following radiotherapy for skin haemangioma in childhood. Radiother Oncol 49: 279–85

    Article  PubMed  CAS  Google Scholar 

  10. Kry SF, Salehpour M, Followill DS et al. (2005) Out-of-field photon and neutron dose equivalents from step-and-shoot intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys 62: 1204–16

    PubMed  Google Scholar 

  11. Stovall M, Weathers R, Kasper C et al. (2006) Dose reconstruction for therapeutic and diagnostic radiation exposures: use in epidemiological studies. Radiât Res 166: 141–57

    Article  PubMed  CAS  Google Scholar 

  12. Kry SF, Titt U, Followill D et al. (2007) A Monte Carlo model for out-of-field dose calculation from high-energy photon therapy. Med Phys 34: 3489–99

    Article  PubMed  Google Scholar 

  13. Robison LL, Mertens AC, Boice JD et al. (2002) Study design and cohort characteristics of the Childhood Cancer Survivor Study: a multi-institutional collaborative project. Med Pediatr Oncol 38: 229–39

    Article  PubMed  Google Scholar 

  14. Kenney LB, Yasui Y, Inskip PD et al. (2004) Breast cancer after childhood cancer: a report from the Childhood Cancer Survivor Study. Ann Intern Med 141: 590–7

    PubMed  Google Scholar 

  15. Bassal M, Mertens AC, Taylor L et al. (2006) Risk of selected subsequent carcinomas in survivors of childhood cancer: a report from the Childhood Cancer Survivor Study. J Clin Oncol 24: 476–83

    Article  PubMed  Google Scholar 

  16. Ronckers CM, Sigurdson AJ, Stovall M et al. (2006) Thyroid cancer in childhood cancer survivors: a detailed evaluation of radiation dose response and its modifiers. Radiat Res 166: 618–28

    Article  PubMed  CAS  Google Scholar 

  17. Henderson TO, Whitton J, Stovall M et al. (2007) Secondary Sarcomas in Childhood Cancer Survivors: A Report From the Childhood Cancer Survivor Study. J Natl Cancer Inst 99: 300–8

    Article  PubMed  Google Scholar 

  18. Mulrooney DA, Dover DC, Li S et al. (2008) Twenty years of follow-up among survivors of childhood and young adult acute myeloid leukemia: a report from the Childhood Cancer Survivor Study. Cancer 112: 2071–9

    Article  PubMed  Google Scholar 

  19. Jenkinson HC, Hawkins MM, Stiller CA et al. (2004) Long-term popu1ation-based risks of second malignant neoplasms after childhood cancer in Britain. Br J Cancer 91: 1905–10

    Article  PubMed  CAS  Google Scholar 

  20. Taylor AJ, Winter DL, Stiller CA et al. (2007) Risk of breast cancer in female survivors of childhood Hodgkin’s disease in Britain: a population-based study. Int J Cancer 120: 384–91

    Article  PubMed  CAS  Google Scholar 

  21. Taylor AJ, Winter DL, Pritchard-Jones K et al. (2008) Second primary neoplasms in survivors of Wilms’ tumour—a population-based cohort study from the British Childhood Cancer Survivor Study. Int J Cancer 122: 2085–93

    Article  PubMed  CAS  Google Scholar 

  22. Garwicz S, Anderson H, Olsen JH et al. (2000) Second malignant neoplasms after cancer in childhood and adolescence: a population-based case-control study in the 5 Nordic countries. The Nordic Society for Pediatric Hematology and Oncology. The Association of the Nordic Cancer Registries. Int J Cancer 88: 672–8

    Article  PubMed  CAS  Google Scholar 

  23. Svahn-Tapper G, Garwicz S, Anderson H et al (2006) Radiation dose and relapse are predictors for development of second malignant solid tumors after cancer in childhood and adolescence: a population-based case-control study in the five Nordic countries. Acta Oncol 45: 438–48

    Article  PubMed  Google Scholar 

  24. de Vathaire F, Shamsaldin A, Grimaud E et al. (1995) Solid malignant neoplasms after childhood irradiation: decrease of the relative risk with time after irradiation. C R Acad Sci III 318: 483–90

    PubMed  Google Scholar 

  25. Kony SJ, de Vathaire F, Chompret A et al. (1997) Radiation and genetic factors in the risk of second malignant neoplasms after a first cancer in childhood. Lancet 350: 91–5

    Article  PubMed  CAS  Google Scholar 

  26. Le Vu B, de Vathaire F, Shamsaldin A et al. (1998) Radiation dose, chemotherapy and risk of osteosarcoma after solid tumours during childhood. Int J Cancer 77: 370–7

    Article  PubMed  Google Scholar 

  27. Little MP, Tawn EJ (2003) Comments on ‘Estimation of X ray overexposure in a childhood leukaemia cluster by means of chromosome aberration analysis’. Radiat Prot Dosimetry 103: 77–9; author reply 79–81

    PubMed  CAS  Google Scholar 

  28. de Vathaire F, Hawkins M, Campbell S et al. (1999) Second malignant neoplasms after a first cancer in childhood: temporal pattern of risk according to type of treatment. Br J Cancer 79: 1884–93

    Article  PubMed  Google Scholar 

  29. Guérin S, Dupuy A, Anderson H et al. (2003) Radiation dose as a risk factor for malignant melanoma following childhood cancer. Eur J Cancer 39: 2379–86

    Article  PubMed  Google Scholar 

  30. Menu-Branthomme A, Rubino C, Shamsaldin A et al. (2004) Radiation dose, chemotherapy and risk of soft tissue sarcoma after solid tumours during childhood. Int J Cancer 110: 87–93

    Article  PubMed  CAS  Google Scholar 

  31. Guibout C, Adjadj E, Rubino C et al. (2005) Malignant breast tumors after radiotherapy for a first cancer during childhood. J Clin Oncol 23: 197–204

    Article  PubMed  Google Scholar 

  32. Haddy N, Le Deley MC, Samand A et al. (2006) Role of radiotherapy and chemotherapy in the risk of secondary leukaemia after a solid tumour in childhood. Eur J Cancer 42: 2757–64

    Article  PubMed  Google Scholar 

  33. Guérin S, Guibout C, Shamsaldin A et al. (2007) Concomitant chemo-radiotherapy and local dose of radiation as risk factors for second malignant neoplasms after solid cancer in childhood: a case-control study. Int J Cancer 120: 96–102

    Article  PubMed  CAS  Google Scholar 

  34. Guérin S, Hawkins M, Shamsaldin A et al. (2007) Treatment-adjusted predisposition to second malignant neoplasms after a solid cancer in childhood: a case-control study. J Clin Oncol 25: 2833–9

    Article  PubMed  CAS  Google Scholar 

  35. Cardous-Ubbink MC, Heinen RC, Bakker PJ et al. (2007) Risk of second malignancies in long-term survivors of childhood cancer. Eur J Cancer 43: 351–62

    Article  PubMed  CAS  Google Scholar 

  36. Klein G, Michaelis J, Spix C et al. (2003) Second malignant neoplasms after treatment of childhood cancer. Eur J Cancer 39: 808–17

    Article  PubMed  CAS  Google Scholar 

  37. Tucker MA, Meadows AT, Boice JDJ et al. (1987) Leukemia after therapy with alkylating agents for childhood cancer. J Natl Cancer Inst 78: 459–64

    PubMed  CAS  Google Scholar 

  38. Le Deley MC, Leblanc T, Shamsaldin A et al. (2003) Risk of secondary leukemia after a solid tumor in childhood according to the dose of epipodophy1lotoxins and anthracyclines: a case-control study by the Societe Francaise d’Oncologie Pediatrique. J Clin Oncol 21: 1074–81

    Article  PubMed  CAS  Google Scholar 

  39. Le Deley MC, Vassal G, Taïbi A et al. (2005) High cumulative rate of secondary leukemia after continuous etoposide treatment for solid tumors in children and young adults. Pediatr Blood Cancer 45: 25–31

    Article  PubMed  Google Scholar 

  40. Schonfeld SJ, Gilbert ES, Dores GM et al. (2006) Acute myeloid leukemia following Hodgkin lymphoma: a population-based study of 35,511 patients. J Natl Cancer Inst 98: 215–8

    PubMed  Google Scholar 

  41. Hawkins MM, Wilson LM, Burton HS et al. (1996) Radiotherapy, alkylating agents, and risk of bone cancer after childhood cancer. J Natl Cancer Inst 88: 270–8

    Article  PubMed  CAS  Google Scholar 

  42. Dollfus Ma, Delthil S, Haye C (1962) Post-radiotherapy cranial sarcoma after treatment of retinoblastoma. Bull Soc Ophtalmol Fr 62: 233–6

    PubMed  CAS  Google Scholar 

  43. Kleinerman RA, Tucker MA, Abramson DH et al. (2007) Risk of soft tissue sarcomas by individual subtype in survivors of hereditary retinoblastoma. J Natl Cancer Inst 99: 24–31

    Article  PubMed  Google Scholar 

  44. Little MP, de Vathaire F, Shamsaldin A et al. (1998) Risks of brain tumour following treatment for cancer in childhood: modification by genetic factors, radiotherapy and chemotherapy. Int J Cancer 78: 269–75

    Article  PubMed  CAS  Google Scholar 

  45. de Vathaire F, Hardiman C, Shamsaldin A et al. (1999) Thyroid carcinomas after irradiation for a first cancer during childhood. Arch Intern Med 159: 2713–9

    Article  PubMed  Google Scholar 

  46. Hill DA, Gilbert E, Dores GM et al. (2005) Breast cancer risk following radiotherapy for Hodgkin lymphoma: modification by other risk factors. Blood 106: 3358–65

    Article  PubMed  CAS  Google Scholar 

  47. Ergun-Longmire B, Mertens AC, Mitby P et al. (2006) Growth hormone treatment and risk of second neoplasms in the childhood cancer survivor. J Clin Endocrinol Metab 91: 3494–8

    Article  PubMed  CAS  Google Scholar 

  48. Banerjee I, Clayton PE (2007) Growth hormone treatment and cancer risk. Endocrinol Metab Clin North Am 36: 247–63

    Article  PubMed  CAS  Google Scholar 

  49. Donadieu J, Leblanc T, Bader Meunier B et al. (2005) Analysis of risk factors for myelodysplasias, leukemias and death from infection among patients with congenital neutropenia. Experience of the French Severe Chronic Neutropenia Study Group. Haematologica 90: 45–53

    PubMed  Google Scholar 

  50. Rosenberg PS, Alter BP, Bolyard AA et al. (2006) The incidence of leukemia and mortality from sepsis in patients with severe congenital neutropenia receiving long-term G-CSF therapy. Blood 107: 4628–35

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag France

About this chapter

Cite this chapter

Sommelet, D., de Vathaire, F. (2009). Facteurs iatrogènes. In: Épidémiologie des cancers de l’enfant. Springer, Paris. https://doi.org/10.1007/978-2-287-78337-1_45

Download citation

  • DOI: https://doi.org/10.1007/978-2-287-78337-1_45

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-287-78336-4

  • Online ISBN: 978-2-287-78337-1

Publish with us

Policies and ethics