Skip to main content

Interactions entre les cellules tumorales et le microenvironnement tissulaire : « Quand le dialogue remplace le monologue »

  • Chapter
  • 236 Accesses

Abstrait

Dès 1970, le cancer du sein a été une des premières pathologies tumorales à bénéficier d’une approche analytique biologique à application clinique promue par le groupe du Pr W.L. McGuire. Le plan cancer décidé par le Président R. Nixon a permis le développement de programmes de recherche qui se sont concrétisés par des progrès rapides dans la compréhension des processus de cancérogenèse et tumorigenèse.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Cunha GR (1972) Epithelio-mesenchymal interactions in primordial gland structures which become responsive to androgenic stimulation. Anat Rec 172: 179–95

    Article  PubMed  CAS  Google Scholar 

  2. Bissell MJ, Hall HG, Parry G (1982) How does the extracellular matrix direct gene expression ? J Theor Biol 99: 31–68

    Article  PubMed  CAS  Google Scholar 

  3. Gimbrone MA, Jr., Leapman SB, Cotran RS, Folkman J (1972) Tumor dormancy in vivo by prevention of neovascularization. J Exp Med 136: 261–76

    Article  PubMed  Google Scholar 

  4. Folkman J (1972) Anti-angiogenesis: new concept for therapy of solid tumors. Ann Surg 175: 409–16

    Article  PubMed  CAS  Google Scholar 

  5. Cunha GR (1976) Epithelial-stromal interactions in development of the urogenital tract. Int Rev Cytol 47: 137–94

    PubMed  CAS  Google Scholar 

  6. Cunha GR, Shannon JM, Neubauer BL et al. (1981) Mesenchymal-epithelial interactions in sex differentiation. Hum Genet 58: 68–77

    Article  PubMed  CAS  Google Scholar 

  7. Donjacour AA, Cunha GR (1991) Stromal regulation of epithelial function. Cancer Treat Res 53: 335–64

    PubMed  CAS  Google Scholar 

  8. Bissell MJ, Aggeler J (1987) Dynamic reciprocity: how do extracellular matrix and hormones direct gene expression? Prog Clin Biol Res 249: 251–62

    PubMed  CAS  Google Scholar 

  9. Bissell MJ, Ram TG (1989) Regulation of functional cytodifferentiation and histogenesis in mammary epithelial cells: role of the extracellular matrix. Environ Health Perspect 80: 61–70

    Article  PubMed  CAS  Google Scholar 

  10. Pourreau-Schneider N, Martin PM, Charpin C et al. (1984) How culture conditions modulate the morphofunctional differentiation of the human estradiol-sensitive mammary cell line (MCF-7). J Steroid Biochem 20: 407–15

    Article  PubMed  CAS  Google Scholar 

  11. Robinson GW, Hennighausen L (1997) Inhibins and activins regulate mammary epithelial cell differentiation through mesenchymal-epithelial interactions. Development 124: 2701–8

    PubMed  CAS  Google Scholar 

  12. Bhowmick NA, Moses HL (2005) Tumor-stroma interactions. Curr Opin Genet Dev 15: 97–101

    Article  PubMed  CAS  Google Scholar 

  13. Colognato H, Yurchenco PD (2000) Form and function: the laminin family of heterotrimers. Dev Dyn 218: 213–34

    Article  PubMed  CAS  Google Scholar 

  14. Matrisian LM, Cunha GR, Mohla S (2001) Epithelial-stromal interactions and tumor progression: meeting summary and future directions. Cancer Res 61: 3844–6

    PubMed  CAS  Google Scholar 

  15. Cunha GR, Hayward SW, Wang YZ (2002) Role of stroma in carcinogenesis of the prostate. Differentiation 70: 473–85

    Article  PubMed  Google Scholar 

  16. Cunha GR, Matrisian LM (2002) It’s not my fault, blame it on my microenvironment. Differentiation 70: 469–72

    Article  PubMed  Google Scholar 

  17. Cunha GR, Cooke PS, Kurita T (2004) Role of stromal-epithelial interactions in hormonal responses. Arch Histol Cytol 67: 417–34

    Article  PubMed  CAS  Google Scholar 

  18. Cunha GR (1994) Role of mesenchymal-epithelial interactions in normal and abnormal development of the mammary gland and prostate. Cancer 74: 1030–44

    Article  PubMed  CAS  Google Scholar 

  19. Martins-Green M, Boudreau N, Bissell MJ (1994) Inflammation is responsible for the development of wound-induced tumors in chickens infected with Rous sarcoma virus. Cancer Res 54: 4334–41

    PubMed  CAS  Google Scholar 

  20. Schmidhauser C, Casperson GF, Bissell MJ (1994) Transcriptional activation by viral enhancers: critical dependence on extracellular matrix-cell interactions in mammary epithelial cells. Mol Carcinog 10: 66–71

    Article  PubMed  CAS  Google Scholar 

  21. Sieweke MH, Bissell MJ (1994) The tumor-promoting effect of wounding: a possible role for TGF-beta-induced stromal alterations. Crit Rev Oncog 5: 297–311

    PubMed  CAS  Google Scholar 

  22. Ronnov-Jessen L, Petersen OW, Koteliansky VE, Bissell MJ (1995) The origin of the myofibroblasts in breast cancer. Recapitulation of tumor environment in culture unravels diversity and implicates converted fibroblasts and recruited smooth muscle cells. J Clin Invest 95: 859–73

    PubMed  CAS  Google Scholar 

  23. Bissell MJ (1999) Tumor plasticity allows vasculogenic mimicry, a novel form of angiogenic switch. A rose by any other name ? Am J Pathol 155: 675–9

    PubMed  CAS  Google Scholar 

  24. Radisky DC, Bissell MJ (2004) Cancer. Respect thy neighbor ! Science 303: 775–7

    Article  PubMed  CAS  Google Scholar 

  25. Ronnov-Jessen L, Petersen OW, Bissell MJ (1996) Cellular changes involved in conversion of normal to malignant breast: importance of the stromal reaction. Physiol Rev 76: 69–125

    PubMed  CAS  Google Scholar 

  26. Mueller MM, Fusenig NE (2004) Friends or foes-bipolar effects of the tumour stroma in cancer. Nat Rev Cancer 4: 839–49

    Article  PubMed  CAS  Google Scholar 

  27. Littlepage LE, Egeblad M, Werb Z (2005) Coevolution of cancer and stromal cellular responses. Cancer Cell 7: 499–500

    Article  PubMed  CAS  Google Scholar 

  28. Barclay WW, Woodruff RD, Hall MC, Cramer SD (2005) A system for studying epithelial-stromal interactions reveals distinct inductive abilities of stromal cells from benign prostatic hyperplasia and prostate cancer. Endocrinology 146: 13–8

    Article  PubMed  CAS  Google Scholar 

  29. Dvorak HF (1986) Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315: 1650–9

    Article  PubMed  CAS  Google Scholar 

  30. Serini G, Gabbiani G (1999) Mechanisms of myofibroblast activity and phenotypic modulation. Exp Cell Res 250: 273–83

    Article  PubMed  CAS  Google Scholar 

  31. Colpaert CG, Vermeulen PB, Van Beest P et al. (2003) Cutaneous breast cancer deposits show distinct growth patterns with different degrees of angiogenesis, hypoxia and fibrin deposition. Histopathology 42: 530–40

    Article  PubMed  CAS  Google Scholar 

  32. Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6: 392–401

    Article  PubMed  CAS  Google Scholar 

  33. Elenbaas B, Weinberg RA (2001) Heterotypic signaling between epithelial tumor cells and fibroblasts in carcinoma formation. Exp Cell Res 264: 169–84

    Article  PubMed  CAS  Google Scholar 

  34. Bhowmick NA, Neilson EG, Moses HL (2004) Stromal fibroblasts in cancer initiation and progression. Nature 432: 332–7

    Article  PubMed  CAS  Google Scholar 

  35. Chang HY, Sneddon JB, Alizadeh AA et al. (2004) Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds. PLoS Biol 2:E7

    Article  PubMed  CAS  Google Scholar 

  36. Fukino K, Shen L, Matsumoto S et al. (2004) Combined total genome loss of heterozygosity scan of breast cancer stroma and epithelium reveals multiplicity of stromal targets. Cancer Res 64: 7231–6

    Article  PubMed  CAS  Google Scholar 

  37. Olumi AF, Grossfeld GD, Hayward SW et al. (1999) Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res 59: 5002–11

    PubMed  CAS  Google Scholar 

  38. Maffini MV, Soto AM, Calabro JM et al. (2004) The stroma as a crucial target in rat mammary gland carcinogenesis. J Cell Sci 117: 1495–502

    Article  PubMed  CAS  Google Scholar 

  39. Bingle L, Brown NJ, Lewis CE (2002) The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol 196: 254–65

    Article  PubMed  CAS  Google Scholar 

  40. Lin EY, Nguyen AV, Russell RG, Pollard JW (2001) Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med 193: 727–40

    Article  PubMed  CAS  Google Scholar 

  41. Bingle L, Lewis CE, Corke KP et al. (2006) Macrophages promote angiogenesis in human breast tumour spheroids in vivo. Br J Cancer 94: 101–7

    Article  PubMed  CAS  Google Scholar 

  42. Thiery JP (2002) Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2: 442–54

    Article  PubMed  CAS  Google Scholar 

  43. Dunnington DJ, Kim U, Hughes CM et al. (1984) Loss of myoepithelial cell characteristics in metastasizing rat mammary tumors relative to their nonmetastasizing counterparts. J Natl Cancer Inst 72: 455–66

    PubMed  CAS  Google Scholar 

  44. Gusterson BA, Warburton MJ, Mitchell D et al. (1982) Distribution of myoepithelial cells and basement membrane proteins in the normal breast and in benign and malignant breast diseases. Cancer Res 42: 4763–70

    PubMed  CAS  Google Scholar 

  45. Jacquemier J, Torrente M, Martin PM et al. (1989) La cellule myoépithéliale. In: Dépistage du cancer du sein et conséquences thérapeutiques Lansac J, LeFloch O, Bougnoux P. Paris: Masson: 83–9046

    Google Scholar 

  46. Charpin C, Lissitzky JC, Kopp F et al. (1985) Immunocytochemical detection of laminin by light and electron microscopy: study of changes in the basement membrane in tumor pathology. Ann Pathol 5: 77–84

    PubMed  CAS  Google Scholar 

  47. Charpin C, Lissitzky JC, Jacquemier J et al. (1986) Immunohistochemical detection of laminin in 98 human breast carcinomas: a light and electron microscopic study. Hum Pathol 17: 355–65

    Article  PubMed  CAS  Google Scholar 

  48. Rolland PH, Martin PM, Jacquemier J et al. (1980) Prostaglandin in human breast cancer: Evidence suggesting that an elevated prostaglandin production is a marker of high metastatic potential for neoplastic cells. J Natl Cancer Inst 64: 1061–70

    PubMed  CAS  Google Scholar 

  49. Basu GD, Pathangey LB, Tinder TL et al. (2004) Cyclooxygenase-2 inhibitor induces apoptosis in breast cancer cells in an in vivo model of spontaneous metastatic breast cancer. Mol Cancer Res 2: 632–42

    PubMed  CAS  Google Scholar 

  50. Wang D, Wang H, Shi Q et al. (2004) Prostaglandin E(2) promotes colorectal adenoma growth via transactivation of the nuclear peroxisome proliferator-activated receptor delta. Cancer Cell 6: 285–95

    Article  PubMed  CAS  Google Scholar 

  51. Adegboyega PA, Ololade O, Saada J et al. (2004) Subepithelial myofibroblasts express cyclooxygenase-2 in colorectal tubular adenomas. Clin Cancer Res 10: 5870–9

    Article  PubMed  CAS  Google Scholar 

  52. Crawford YG, Gauthier ML, Joubel A et al. (2004) Histologically normal human mammary epithelia with silenced p16(INK4a) overexpress COX-2, promoting a premalignant program. Cancer Cell 5: 263–73

    Article  PubMed  CAS  Google Scholar 

  53. Hlatky L, Hahnfeldt P, Folkman J (2002) Clinical application of antiangiogenic therapy: microvessel density, what it does and doesn’t tell us. J Natl Cancer Inst 94: 883–93

    PubMed  Google Scholar 

  54. Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86: 353–64

    Article  PubMed  CAS  Google Scholar 

  55. Kinzler KW, Vogelstein B (1996) Life (and death) in a malignant tumour. Nature 379: 19–20

    Article  PubMed  CAS  Google Scholar 

  56. Lin EY, Nguyen AV, Russell RG et al. (2001) Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med 193: 727–40

    Article  PubMed  CAS  Google Scholar 

  57. Nielsen BS, Timshel S, Kjeldsen L et al. (1996) 92 kDa type IV collagenase (MMP-9) is expressed in neutrophils and macrophages but not in malignant epithelial cells in human colon cancer. Int J Cancer 65: 57–62

    Article  PubMed  CAS  Google Scholar 

  58. Leek RD, Harris AL (2002) Tumor-associated macrophages in breast cancer. J Mammary Gland Biol Neoplasia 7: 177–89

    Article  PubMed  Google Scholar 

  59. Leek RD, Hunt NC, Landers RJ et al. (2000) Macrophage infiltration is associated with VEGF and EGFR expression in breast cancer. J Pathol 190: 430–6

    Article  PubMed  CAS  Google Scholar 

  60. Ferrara N (2004) Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 25: 581–611

    Article  PubMed  CAS  Google Scholar 

  61. Orimo A, Gupta PB, Sgroi DC et al. (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121: 335–48

    Article  PubMed  CAS  Google Scholar 

  62. Chen JJ, Lin YC, Yao PL et al. (2005) Tumor-associated macrophages: the double-edged sword in cancer progression. J Clin Oncol 23: 953–64

    Article  PubMed  CAS  Google Scholar 

  63. Folkman J, Long DM, Becker FF (1963) Growth and metastasis of tumours in organ culture. Cancer 16: 453–67

    Article  PubMed  CAS  Google Scholar 

  64. Gimbrone MA, Jr., Leapman SB, Cotran RS, Folkman J (1973) Tumor angiogenesis: iris neovascularization at a distance from experimental intraocular tumors. J Natl Cancer Inst 50: 219–28

    PubMed  Google Scholar 

  65. Folkman J (1990) What is the evidence that tumors are angiogenesis dependent ? J Natl Cancer Inst 82: 4–6

    Article  PubMed  CAS  Google Scholar 

  66. Leung DW, Cachianes G, Kuang WJ et al. (1989) Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246: 1306–9

    Article  PubMed  CAS  Google Scholar 

  67. Cajot JF, Barnat J, Bergonzelli GE, et al. (1990) Plasminogen-activator inhibitor type 1 is a potent natural inhibitor of extracellular matrix degradation by fibrosarcoma and colon carcinomal cells. Proc Natl Acad Sci USA 87: 6939–43

    Article  PubMed  CAS  Google Scholar 

  68. Keck PJ, Hauser SD, Krivi G et al. (1989) Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science 246: 1309–12

    Article  PubMed  CAS  Google Scholar 

  69. Gospodarowicz D, Abraham JA, Schilling J (1989) Isolation and characterization of a vascular endothelial cell mitogen produced by pituitary-derived folliculo stellate cells. Proc Natl Acad Sci USA 86: 7311–5

    Article  PubMed  CAS  Google Scholar 

  70. Conn G, Soderman DD, Schaeffer MT et al. (1990) Purification of a glycoprotein vascular endothelial cell mitogen from a rat glioma-derived cell line. Proc Natl Acad Sci USA 87: 1323–7

    Article  PubMed  CAS  Google Scholar 

  71. Noden DM (1989) Embryonic origins and assembly of blood vessels. Am Rev Respir Dis 140: 1097–103

    PubMed  CAS  Google Scholar 

  72. Carmeliet P, Ferreira V, Breier G et al. (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380: 435–9

    Article  PubMed  CAS  Google Scholar 

  73. Ferrara N, Carver-Moore K, Chen H et al. (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380: 439–42

    Article  PubMed  CAS  Google Scholar 

  74. Shalaby F, Rossant J, Yamaguchi TP et al. (1995) Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376: 62–6

    Article  PubMed  CAS  Google Scholar 

  75. Fong GH, Rossant J, Gertsenstein M, Breitman ML (1995) Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376: 66–70

    Article  PubMed  CAS  Google Scholar 

  76. Stewart PA, Wiley MJ (1981) Developing nervous tissue induces formation of blood-brain barrier characteristics in invading endothelial cells: a study using quail-chick transplantation chimeras. Dev Biol 84: 183–92

    Article  PubMed  CAS  Google Scholar 

  77. Brooks PC, Montgomery AM, Rosenfeld M et al. (1994) Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79: 1157–64

    Article  PubMed  CAS  Google Scholar 

  78. Cheresh DA (1987) Human endothelial cells synthesize and express an Arg-Gly-Aspdirected adhesion receptor involved in attachment to fibrinogen and von Willebrand factor. Proc Natl Acad Sci USA 84: 6471–5

    Article  PubMed  CAS  Google Scholar 

  79. Look MP, van Putten WL, Duffy MJ et al. (2002) Pooled analysis of prognostic impact of urokinase-type plasminogen activator and its inhibitor PAI-1 in 8377 breast cancer patients. J Natl Cancer Inst 94: 116–28

    PubMed  CAS  Google Scholar 

  80. Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3: 721–32

    Article  PubMed  CAS  Google Scholar 

  81. Shweiki D, Itin A, Soffer D, Keshet E (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359: 843–5

    Article  PubMed  CAS  Google Scholar 

  82. Shweiki D, Neeman M, Itin A, Keshet E (1995) Induction of vascular endothelial growth factor expression by hypoxia and by glucose deficiency in multicell spheroids: implications for tumor angiogenesis. Proc Natl Acad Sci USA 92: 768–72

    Article  PubMed  CAS  Google Scholar 

  83. Dano K, Andreasen PA, Grondahl Hansen J et al. (1985) Plasminogen activators, tissue degradation and cancer. Adv Cancer Res 44: 139–266

    PubMed  CAS  Google Scholar 

  84. Collen D (1980) On the regulation and control of fibrinolysis. Edward Kowalski Memorial Lecture. Thromb Haemost 43: 77–89

    PubMed  CAS  Google Scholar 

  85. Schousboe I, Feddersen K, Rojkjaer R (1999) Factor XIIa is a kinetically favorable plasminogen activator (in process citation). Thromb. Haemost 82: 1041–6

    PubMed  CAS  Google Scholar 

  86. Murphy G, Atkinson S, Ward R et al. (1992) The role of plasminogen activators in the regulation of connective tissue metalloproteinases. Ann NY Acad Sci 667: 1–12

    Article  PubMed  CAS  Google Scholar 

  87. Ellis V, Pyke C, Eriksen J et al. (1992) The urokinase receptor: involvement in cell surface proteolysis and cancer invasion. Ann NY Acad Sci 667: 13–31

    Article  PubMed  CAS  Google Scholar 

  88. HE CS, Wilhelm SM, Pentland AP et al. (1989) Tissue cooperation in a proteolytic cascade activating human interstitial collagenase. Proc Natl Acad Sci USA 2632-6

    Google Scholar 

  89. Baramova EN, Bajou K, Remacle A et al (1997) Involvement of pa/plasmin system in the processing of pro-mmp-9 and the second step of pro-mmp-2 activation. FEBS Letters 405: 157–62

    Article  PubMed  CAS  Google Scholar 

  90. Lyons RM, Gentry LE, Purchio AF et al. (1990) Mechanism of activation of latent recombinant transforming growth factor beta 1 by plasmin. J Cell Biol 110: 1361–7

    Article  PubMed  CAS  Google Scholar 

  91. Sato Y, Rifkin DB (1989) Inhibition of endothelial cell movement by pericytes and smooth muscle cells: activation of a latent transforming growth factor-beta1-like molecule by plasmin during co-culture. J Cell Biol 109: 309–15

    Article  PubMed  CAS  Google Scholar 

  92. Ossowski L, Quigley JP, Kellerman GM et al. (1973) Fibrinolysis associated with oncogenic transformation. Requirement of plasminogen for correlated changes in cellular morphology, colony formation in agar and cell migration. J Exp Med 138: 1056–64

    Article  PubMed  CAS  Google Scholar 

  93. Vavani J, Orr W, Ward PA (1979) Cell-associated proteases affect tumour cell migration in vitro. J Cell Sci 26: 241–52

    Google Scholar 

  94. Mawatari M, Okamura K, Matsuda T et al. (1991) Tumor necrosis factor and epidermal growth factor modulate migration of human microvascular endothelial cells and production of tissue-type plasminogen activator and its inhibitor. Exp Cell Res 192: 574–80

    Article  PubMed  CAS  Google Scholar 

  95. Morimoto K, Mishima H, Nishida T et al. (1993) Role of urokinase type plasminogen activator (u-PA) in corneal epithelial migration. Thromb Haemost 69: 387–91

    PubMed  CAS  Google Scholar 

  96. O’Reilly MS, Holmgren L, Shing Y et al. (1994) Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma (see comments). Cell 79: 315–28

    Article  PubMed  CAS  Google Scholar 

  97. O’Reilly MS, Holmgren L, Chen C et al. (1996) Angiostatin induces and sustains dormancy of human primary tumors in mice. Nat Med 2: 689–92

    Article  PubMed  CAS  Google Scholar 

  98. Grondahl-Hansen J, Ralkiaer E, Kirkeby LT et al. (1991) Localization of urokinase-type plasminogen activator in stromal cells in adenocarcinomas of the colon in humans. Am J Pathol 138: 111–7

    PubMed  CAS  Google Scholar 

  99. Pyke C, Kristensen P, Ralfkiaer E et al. (1991) Urokinase-type plasminogen activator is expressed in stromal cells and its receptor in cancer cells at invasive foci in human colon adenocarcinomas. Am J Pathol 138: 1059–67

    PubMed  CAS  Google Scholar 

  100. Ossowski L, Reich E (1983) Antibodies to plasminogen activator inhibit human tumor metastasis. Cell 35: 611–9

    Article  PubMed  CAS  Google Scholar 

  101. Konkle BA, Ginsburg D (1988) The addition of endothelial cell growth factor and heparin to human umbilical vein endothelial cell cultures decreases plasminogen activator inhibitor-1 expression. J Clin Invest 82: 579–85

    Article  PubMed  CAS  Google Scholar 

  102. Mignatti P, Robbins E, Rifkin D. (1986) Tumor invasion through the human amniotic membrane l requirement for a proteinase cascade. Cell 47: 487–98

    Article  PubMed  CAS  Google Scholar 

  103. Axelrod JH, Reich R, Miskin R (1989) Expression of human recombinant plasminogen activators enhances invasion and experimental metastasis of H-ras-transformed NIH 3T3 cells. Mol Cell Biol 9: 2133–41

    PubMed  CAS  Google Scholar 

  104. Cajot JF, Barnat J, Bergonzelli GE et al. (1990) Plasminogen-activator inhibitor type 1 is a potent natural inhibitor of extracellular matrix degradation by fibrosarcoma and colon carcinomal cells. Proc Natl Acad Sci USA 87: 6939–43

    Article  PubMed  CAS  Google Scholar 

  105. Hollas W, Blasi F, Boyd D (1991) Role of the urokinase receptor in facilitating extracellular matrix invasion by cultured colon cancer. Cancer Res 51: 3690–5

    PubMed  CAS  Google Scholar 

  106. Kobayashi H, Ohi H, Sugimura M et al. (1992) Inhibition of in vitro ovarian cancer cell invasion by modulation of urokinase-type plasminogen activator and cathepsin B. Cancer 52: 3610–4

    CAS  Google Scholar 

  107. Wilhelm O, Schmitt M, Hohl S et al. (1995) Antisens inhibiion of urokinase reduces spread of human ovarian cancer in mice. Clin Exp Metastasis 13: 296–302

    Article  PubMed  CAS  Google Scholar 

  108. Holst-Hansen C, Johannessen B, Hoyer-Hansen G et al. (1996) Urokinase-type plasminogen activation in three human breast cancer cell lines correlates with their in vitro invasiveness. Clin Exp Metastasis 14: 297–307

    PubMed  CAS  Google Scholar 

  109. Shapiro RL, Duquette JG, Roses DF et al. (1996) Induction of primary cutaneous melanocytic neoplasms in urokinase-type plasminogen activator (upa)-deficient and wild-type mice-cellular blue nevi invade but do not progress to malignant melanoma in upa-deficient animals. Cancer Res 56: 3597–604

    PubMed  CAS  Google Scholar 

  110. Nikitenko LL, Fox SB, Kehoe S et al. (2006) Adrenomedullin and tumour angiogenesis. Br J Cancer 94: 1–7

    Article  PubMed  CAS  Google Scholar 

  111. Bruick RK, McKnight SL (2002) Transcription. Oxygen sensing gets a second wind. Science 295: 807–8

    Article  PubMed  CAS  Google Scholar 

  112. Ouafik L, Sauze S, Boudouresque F et al. (2002) Neutralization of adrenomedullin inhibits the growth of human glioblasma. Cell lines in vitro and supresses tumor xenograft growth in vivo. Am J Pathol 160: 1279–92

    PubMed  CAS  Google Scholar 

  113. Sauze-Fernandez S, Delfino C, Mabrouk K et al. (2004) Effects of Adrenomedulline on Endothelial Cells in the multistep process of angiogenesis: involvement of CRLR/RAMP2 and CRLR/RAMP3 receptors. Int J Cancer 108: 797–804

    Article  CAS  Google Scholar 

  114. Berenguer C, Boudouresque F, Dussert C et al. (2007) Adrenomedullin, an Autocrine/Paracrine Factor Induced by Androgen Withdrawal, Stimulates « Neuroendocrine Phenotype » in LNCaP Prostate Tumor Cells. Oncogene (in press)

    Google Scholar 

  115. Albini A, Sporn MB (2007) The tumour microenvironment as a target for chemoprevention. Nat Rev Cancer 7: 139–47

    Article  PubMed  CAS  Google Scholar 

  116. Cairns R, Papandreou I, Denko N (2006) Overcoming physiologic barriers to cancer treatment by molecularly targeting the tumor microenvironment. Mol Cancer Res 4: 61–70

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag France

About this chapter

Cite this chapter

Martin, P.M., Ouafik, L. (2007). Interactions entre les cellules tumorales et le microenvironnement tissulaire : « Quand le dialogue remplace le monologue ». In: Cancer du sein avancé. Springer, Paris. https://doi.org/10.1007/978-2-287-72615-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-2-287-72615-6_11

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-287-72614-9

  • Online ISBN: 978-2-287-72615-6

Publish with us

Policies and ethics