Skip to main content
  • 307 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Ahmed AA, Nordlind K, Schultzberg M, Liden S (1994) Interleukin-1 alpha-and beta-, interleukin-6-and tumour necrosis factor-alpha-like immunoreactivities in chronic granulomatous skin conditions. Acta Derm Venereol 74: 435–40

    PubMed  CAS  Google Scholar 

  2. Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4: 499–511

    Article  PubMed  CAS  Google Scholar 

  3. Ali RS, Falconer A, Ikram M et al. (2001) Expression of the peptide antibiotics human beta defensin-1 and human beta defensin-2 in normal human skin. J Invest Dermatol 117: 106–11

    Article  PubMed  CAS  Google Scholar 

  4. Baker BS, Ovigne JM, Powles AV et al. (2003) Normal keratinocytes express Toll-like receptors (TLRs) 1, 2 and 5: modulation of TLR expression in chronic plaque psoriasis. Br J Dermatol 148: 670–9

    Article  PubMed  CAS  Google Scholar 

  5. Barker JN, Mitra RS, Griffits CE et al. (1991) Keratinocytes as initiators of inflammation. Lancet 337: 211–4

    Article  PubMed  CAS  Google Scholar 

  6. Barker JN, Jones ML, Mitra RS et al. (1991) Modulation of keratinocyte-derived interleukin-8 which is chemotactic for neutrophils and T lymphocytes. Am J Pathol 139: 869–76

    PubMed  CAS  Google Scholar 

  7. Biragyn A, Ruffini PA, Leifer CA et al. (2002) Toll-like receptor 4-dependent activation of dendritic cells by beta-defensin 2. Science 298: 1025–9

    Article  PubMed  CAS  Google Scholar 

  8. Boer J, Weltevreden EF (1996) Hidradenitis suppurativa or acne inversa. A clinicopathological study of early lesions. Br J Dermatol 135: 721–5

    Article  PubMed  CAS  Google Scholar 

  9. Chadebech P, Goidin D, Jacquet C et al. (2003) Use of human reconstructed epidermis to analyze the regulation of beta-defensin hBD-1, hBD-2, and hBD-3 expression in response to LPS. Cell Biol Toxicol 19: 313–24

    Article  PubMed  CAS  Google Scholar 

  10. Chiller K, Selkin BA, Murakawa GJ (2001) Skin microflora and bacterial infections of the skin. J Investig Dermatol Symp Proc 6: 170–4

    Article  PubMed  CAS  Google Scholar 

  11. Chung WO, Dale BA (2004) Innate immune response of oral and foreskin keratinocytes: utilization of different signaling pathways by various bacterial species. Infect Immun 72: 352–8

    Article  PubMed  CAS  Google Scholar 

  12. Curry JL, Qin JZ, Bonish B et al. (2003) Innate immunerelated receptors in normal and psoriatic skin. Arch Pathol Lab Med 127: 178–86

    PubMed  CAS  Google Scholar 

  13. Dinulos JG, Mentele L, Fredericks LP et al. (2003) Keratinocyte expression of human beta defensin 2 following bacterial infection: role in cutaneous host defense. Clin Diagn Lab Immunol 10: 161–6

    Article  PubMed  CAS  Google Scholar 

  14. Dorschner RA, Pestonjamasp VK, Tamakuwala S et al. (2001) Cutaneous injury induces the release of cathelicidin anti-microbial peptides active against group A Streptococcus. J Invest Dermatol 117: 91–7

    Article  PubMed  CAS  Google Scholar 

  15. Dvorak VC, Root RK, MacGregor RR (1977) Host defense mechanisms in hidradenitis suppurativa. Arch Dermatol 113: 450–3

    Article  PubMed  CAS  Google Scholar 

  16. Ebnet K, Brown KD, Siebenlist UK et al. (1997) Borrelia burgdorferi activates nuclear factor-kappa B and is a potent inducer of chemokine and adhesion molecule gene expression in endothelial cells and fibroblasts. J Immunol 158: 3285–92

    PubMed  CAS  Google Scholar 

  17. Frohm M, Agerberth B, Ahangari G et al. (1997) The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes during inflammatory disorders. J Biol Chem 272: 15258–63

    Article  PubMed  CAS  Google Scholar 

  18. Fukao T, Koyasu S (2003) PI3K and negative regulation of TLR signaling. Trends Immunol 24: 358–63

    Article  PubMed  CAS  Google Scholar 

  19. Fukuoka M, Ogino Y, Sato H et al. (1998) RANTES expression in psoriatic skin, and regulation of RANTES and IL-8 production in cultured epidermal keratinocytes by active vitamin D3 (tacalcitol). Br J Dermatol 138: 63–70

    Article  PubMed  CAS  Google Scholar 

  20. Fulton C, Anderson GM, Zasloff M et al. (1997) Expression of natural peptide antibiotics in human skin. Lancet 350: 1750–1

    Article  PubMed  CAS  Google Scholar 

  21. Gallo RL, Huttner KM (1998) Antimicrobial peptides: an emerging concept in cutaneous biology. J Invest Dermatol 111: 739–43

    Article  PubMed  CAS  Google Scholar 

  22. Georgel P, Crozat K, Lauth X et al. (2005) A TLR2-responsive lipid effector pathway protects mammals against Gram-positive bacterial skin infections. Infect Immunity 73: 4512–21

    Article  CAS  Google Scholar 

  23. Gillitzer R, Wolff K, Tong D et al. (1993) MCP-1 mRNA expression in basal keratinocytes of psoriatic lesions. J Invest Dermatol 101: 127–31

    Article  PubMed  CAS  Google Scholar 

  24. Giustizieri ML, Mascia F, Frezzolini A et al. (2001) Keratinocytes from patients with atopic dermatitis and psoriasis show a distinct chemokine production profile in response to T cell-derived cytokines. J Allergy Clin Immunol 107: 871–7

    Article  PubMed  CAS  Google Scholar 

  25. Harder J, Schroder JM (2002) RNase 7, a novel innate immune defense antimicrobial protein of healthy human skin. J Biol Chem 277: 46779–84

    Article  PubMed  CAS  Google Scholar 

  26. Harder J, Bartels J, Christophers E et al. (1997) A peptide antibiotic from human skin. Nature 387: 861

    Article  PubMed  CAS  Google Scholar 

  27. Harder J, Bartels J, Christophers E et al. (2001) Isolation and characterization of human beta-defensin-3, a novel human inducible peptide antibiotic. J Biol Chem 276: 5707–13

    Article  PubMed  CAS  Google Scholar 

  28. Harder J, Meyer-Hoffert U, Wehkamp K et al. (2004) Differential gene induction of human beta-defensins (hBD-1,-2,-3, and-4) in keratinocytes is inhibited by retinoic acid. J Invest Dermatol 123: 522–9

    Article  PubMed  CAS  Google Scholar 

  29. Heilborn JD, Nilsson MF, Kratz G et al. (2003) The cathelicidin anti-microbial peptide LL-37 is involved in re-epithelialization of human skin wounds and is lacking in chronic ulcer epithelium. J Invest Dermatol 120: 379–89

    Article  PubMed  CAS  Google Scholar 

  30. Hieshima K, Ohtani H, Shibano M et al. (2003) CCL28 has dual roles in mucosal immunity as a chemokine with broad-spectrum antimicrobial activity. J Immunol 170: 452–1461

    Google Scholar 

  31. Homey B, Bunemann E (2004) Chemokines and inflammatory skin diseases. Ernst Schering Res Found Workshop 45: 69–83

    PubMed  CAS  Google Scholar 

  32. Homey B, Alenius H, Muller A et al. (2002) CCL27-CCR10 interactions regulate T cell-mediated skin inflammation. Nat Med 8: 157–65

    Article  PubMed  CAS  Google Scholar 

  33. Janeway CA Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20: 197–216

    Article  PubMed  CAS  Google Scholar 

  34. Jansen I, Altmeyer P, Plewig G (2001) Acne inversa (alias hidradenitis suppurativa). J Eur Acad Dermatol Venereol 15: 532–540

    Article  PubMed  CAS  Google Scholar 

  35. Jemec GB, Faber M, Gutschik E et al. (1996) The bacteriology of hidradenitis suppurativa. Dermatology 193: 203–6

    Article  PubMed  CAS  Google Scholar 

  36. Kawai K, Shimura H, Minagawa M et al. (2002) Expression of functional Toll-like receptor 2 on human epidermal keratinocytes. J Dermatol Sci 30: 185–94

    Article  PubMed  CAS  Google Scholar 

  37. Kim J, Ochoa MT, Krutzik SR et al. (2002) Activation of toll-like receptor 2 in acne triggers inflammatory cytokine responses. J Immunol 169: 1535–41

    PubMed  CAS  Google Scholar 

  38. Kis K, Koreck A, Szegedi K et al. (2005) Polymorphisms of interleukin-1 receptor antagonist, Toll-like Receptor 2 and 4 genes in patients with acne. ESDR abstract reference number: E0349

    Google Scholar 

  39. Kopp E, Medzhitov R (2002) Skin antibiotics get in the loop. Nat Med 8: 1359–60

    Article  PubMed  CAS  Google Scholar 

  40. Koreck A, Pivarcsi A, Dobozy A et al. (2003) The role of innate immunity in the pathogenesis of acne. Dermatology 206: 96–105

    Article  PubMed  CAS  Google Scholar 

  41. Lapins J, Jarstrand C, Emtestam L (1999) Coagulasenegative staphylococci are the most common bacteria found in cultures from the deep portions of hidradenitis suppurativa lesions, as obtained by carbon dioxide laser surgery. Br J Dermatol 140: 90–5

    Article  PubMed  CAS  Google Scholar 

  42. Lapins J, Asman B, Gustafsson A et al. (2001) Neutrophil-related host response in hidradenitis suppurativa: a pilot study in patients with inactive disease. Acta Derm Venereol 81: 96–9

    Article  PubMed  CAS  Google Scholar 

  43. Larrick JW, Hirata M, Balint RF et al. (1995) Human CAP18: a novel antimicrobial lipopolysaccharide-binding protein. Infect Immun 63: 1291–7

    PubMed  CAS  Google Scholar 

  44. Liu AY, Destoumieux D, Wong AV et al. (2002) Human beta-defensin-2 production in keratinocytes is regulated by interleukin-1, bacteria, and the state of differentiation. J Invest Dermatol 118: 275–81

    Article  PubMed  CAS  Google Scholar 

  45. Liu L, Zhou X, Shi J, Xie X et al. (2003) Toll-like receptor-9 induced by physical trauma mediates release of cytokines following exposure to CpG motif in mouse skin. Immunology 110: 341–7

    Article  PubMed  CAS  Google Scholar 

  46. Marzano AV, Mercogliano M, Borghi A et al. (2003) Cutaneous infection caused by Salmonella typhi. J Eur Acad Dermatol Venereol 17: 575–7

    Article  PubMed  CAS  Google Scholar 

  47. Matsubara M, Harada D, Manabe H et al. (2004) Staphylococcus aureus peptidoglycan stimulates granulocyte macrophage colony-stimulating factor production from human epidermal keratinocytes via mitogen-activated protein kinases. FEBS Lett 566: 195–200

    Article  PubMed  CAS  Google Scholar 

  48. McDaniel DH, Welton WA (1984) Furunculosis and hidradenitis suppur-ativa response. Arch Dermatol 120: 437

    Article  PubMed  CAS  Google Scholar 

  49. Mempel M, Voelcker V, Kollisch G et al. (2003) Toll-like receptor expression in human keratinocytes: nuclear factor kappaB controlled gene activation by Staphylococcus aureus is toll-like receptor 2 but not tolllike receptor 4 or platelet activating factor receptor dependent. J Invest Dermatol 121: 1389–96

    Article  PubMed  CAS  Google Scholar 

  50. Mercurio F, Manning AM (1999) Multiple signals converging on NF-kappaB. Curr Opin Cell Biol 11: 226–32

    Article  PubMed  CAS  Google Scholar 

  51. Midorikawa K, Ouhara K, Komatsuzawa H et al. (2003) Staphylococcus aureus susceptibility to innate antimicrobial peptides, beta-defensins and CAP18, expressed by human keratinocytes. Infect Immun 71: 3730–9

    Article  PubMed  CAS  Google Scholar 

  52. Murakami M, Ohtake T, Dorschner RA et al. (2002) Cathelicidin anti-microbial peptide expression in sweat, an innate defense system for the skin. J Invest Dermatol 119: 1090–5

    Article  PubMed  CAS  Google Scholar 

  53. Murphy JE, Robert C, Kupper TS (2000) Interleukin-1 and cutaneous inflammation: a crucial link between innate and acquired immunity. J Invest Dermatol 114: 602–8

    Article  PubMed  CAS  Google Scholar 

  54. Nagy I, Pivarcsi A, Koreck A et al. (2005) Distinct strains of Propionibacterium acnes induces selective human b-defensin-2 and interleukin-8 expression in human keratinocytes through Toll-like receptors. J Invest Dermatol 124: 931–8

    Article  PubMed  CAS  Google Scholar 

  55. Nizet V, Ohtake T, Lauth X et al. (2001) Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature 414: 454–7

    Article  PubMed  CAS  Google Scholar 

  56. Niyonsaba F, Iwabuchi K, Someya A et al. (2002) A cathelicidin family of human antibacterial peptide LL-37 induces mast cell chemotaxis. Immunology 106: 20–6

    Article  PubMed  CAS  Google Scholar 

  57. Oren A, Ganz T, Liu L, Meerloo T (2003) In human epidermis, beta-defensin 2 is packaged in lamellar bodies. Exp Mol Pathol 74: 180–2

    Article  PubMed  CAS  Google Scholar 

  58. Otte JM, Cario E, Podolsky DK (2004) Mechanisms of cross hyporesponsiveness to Toll-like receptor bacterial ligands in intestinal epithelial cells. Gastroenterology 126: 1054–70

    Article  PubMed  CAS  Google Scholar 

  59. Pivarcsi A, Nagy I, Kemeny L (2005) Innate immunity of the skin: how keratinocytes fight against pathogens. Curr Immunol Rev 1: 29–42

    Article  CAS  Google Scholar 

  60. Pivarcsi A, Koreck A, Bodai L et al. (2004) Differentiation-regulated expression of Toll-like receptors 2 and 4 in HaCaT keratinocytes. Arch Dermatol Res 296: 120–4

    Article  PubMed  CAS  Google Scholar 

  61. Pivarcsi A, Bodai L, Rethi B et al. (2003) Expression and function of Toll-like receptors 2 and 4 in human keratinocytes. Int Immunol 15: 721–30

    Article  PubMed  CAS  Google Scholar 

  62. Rakoff-Nahoum S, Paglino J et al. (2004) Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118: 229–41

    Article  PubMed  CAS  Google Scholar 

  63. Raychaudhuri SP, Jiang WY, Farber EM et al. (1999) Upregulation of RANTES in psoriatic keratinocytes: a possible pathogenic mechanism for psoriasis. Acta Derm Venereol 79: 9–11

    Article  PubMed  CAS  Google Scholar 

  64. Schroder JM, Harder J (1999) Human beta-defensin-2. Int J Biochem Cell Biol 31: 645–51

    Article  PubMed  CAS  Google Scholar 

  65. Shimazu R, Akashi S, Ogata H et al. (1999) MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med 189: 1777–82

    Article  PubMed  CAS  Google Scholar 

  66. Song PI, Park YM, Abraham T et al. (2002) Human keratinocytes express functional CD14 and toll-like receptor 4. J Invest Dermatol 119: 424–32

    Article  PubMed  CAS  Google Scholar 

  67. Strober W (2004) Epithelial cells pay a Toll for protection. Nat Med 10: 898–900

    Article  PubMed  CAS  Google Scholar 

  68. Sugawara I, Yamada H, Li C et al. (2003) Mycobacterial infection in TLR2 and TLR6 knockout mice. Microbiol Immunol 47: 327–36

    PubMed  CAS  Google Scholar 

  69. Takeda K, Akira S (2004) TLR signaling pathways Semin Immunol 16: 3–9

    Article  PubMed  CAS  Google Scholar 

  70. Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol 21: 335–76

    Article  PubMed  CAS  Google Scholar 

  71. Zhang G, Ghosh S (2001) Toll-like receptor-mediated NF-kappaB activation: a phylogenetically conserved paradigm in innate immunity. J Clin Invest 107: 13–9

    Article  PubMed  CAS  Google Scholar 

  72. Wedi B, Kapp A (2002) Helicobacter pylori infection in skin diseases: a critical appraisal. Am J Clin Dermatol 3: 273–82

    Article  PubMed  Google Scholar 

  73. Wiedow O, Harder J, Bartels J et al. (1998) Antileukoprotease in human skin: an antibiotic peptide constitutively produced by keratinocytes. Biochem Biophys Res Commun 248: 904–9

    Article  PubMed  CAS  Google Scholar 

  74. Witkin SS, Gerber S, Ledger WJ (2002) Influence of interleukin-1 receptor antagonist gene polymorphism on disease. Clin Infect Dis 34: 204–9

    Article  PubMed  CAS  Google Scholar 

  75. Wollina U, Kunkel W, Bulling L et al. (2004) Candida albicans-induced inflammatory response in human keratinocytes. Mycoses 47: 193–9

    Article  PubMed  CAS  Google Scholar 

  76. Wooten RM, Ma Y, Yoder RA et al. (2002) Toll-like receptor 2 is required for innate, but not acquired, host defense to Borrelia burgdorferi. J Immunol 168: 348–55

    PubMed  CAS  Google Scholar 

  77. Wyllie DH, Kiss-Toth E, Visintin A et al. (2000) Evidence for an accessory protein function for Toll-like receptor 1 in anti-bacterial responses. J Immunol 165: 7125–32

    PubMed  CAS  Google Scholar 

  78. Yang D, Chen Q, Chertov O et al. (2000) Human neutrophil defensins selectively chemoattract naive T and immature dendritic cells. J Leukoc Biol 68: 9–14

    PubMed  CAS  Google Scholar 

  79. Yang D, Biragyn A, Kwak LW et al. (2002) Mammalian defensins in immunity: more than just microbicidal. Trends Immunol 23: 291–6

    Article  PubMed  CAS  Google Scholar 

  80. Yang D, Chen Q, Hoover DM et al. (2003) Many chemokines including CCL20/MIP-3alpha display antimicrobial activity. J Leukoc Biol 74: 448–55

    Article  PubMed  CAS  Google Scholar 

  81. Yang D, Chertov O, Bykovskaia SN et al. (1999) Betadefensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science 286: 525–8

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag France, Paris,

About this chapter

Cite this chapter

Nagy, I., Kemény, L. (2008). Immunité. In: Hidradénite suppurée. Springer, Paris. https://doi.org/10.1007/978-2-287-72063-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-2-287-72063-5_13

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-287-72062-8

  • Online ISBN: 978-2-287-72063-5

Publish with us

Policies and ethics