Skip to main content

Part of the book series: Le point sur ... ((POINT))

  • 553 Accesses

Abstrait

Le cathéter artériel pulmonaire fait partie intégrante des outils de monitorage hémodynamique depuis une trentaine d’années. Des techniques moins invasives ont émergé depuis quelques années, limitant donc l’usage du cathéter artériel pulmonaire. Cependant, il est important de comprendre quelles informations peuvent être obtenues à l’aide de ce cathéter, tant pour interpréter les connaissances physiopathologiques obtenues grâce à celui-ci, que pour décider d’insérer un cathéter artériel pulmonaire et d’en interpréter les résultats. Dans le présent chapitre nous allons discuter les diverses informations qui peuvent être obtenues grâce au cathéter artériel pulmonaire. Les mesures qui peuvent ainsi être obtenues sont les mesures des pressions intravasculaires, la mesure du débit cardiaque et la mesure de la saturation veineuse mêlée en oxygène.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Souza R, Amato MB, Demarzo SE et al. (2005) Pulmonary capillary pressure in pulmonary hypertension. Crit Care 9: R132–8

    Article  PubMed  Google Scholar 

  2. Gaar KA Jr, Taylor AE, Owens LJ et al. (1967) Pulmonary capillary pressure and filtration coefficient in the isolated perfused lung. Am J Physiol 213: 910–4

    PubMed  Google Scholar 

  3. Carter RS, Snyder JV, Pinsky MR (1985) LV filling pressure during PEEP measured by nadir wedge pressure after airway disconnection. Am J Physiol 249: H770–6

    PubMed  CAS  Google Scholar 

  4. Pinsky M, Vincent JL, De Smet JM (1991) Estimating left ventricular filling pressure during positive end-expiratory pressure in humans. Am Rev Respir Dis 143: 25–31

    PubMed  CAS  Google Scholar 

  5. Teboul JL, Pinsky MR, Mercat A et al. (2000) Estimating cardiac filling pressure in mechanically ventilated patients with hyperinflation. Crit Care Med 28: 3631–6

    Article  PubMed  CAS  Google Scholar 

  6. Teboul JL, Besbes M, Andrivet P (1992) A bedside index assessing the reliability of pulmonary artery occlusion pressure measurements during mechanical ventilation with PEEP. J Crit Care 7: 22–9

    Article  Google Scholar 

  7. Crexells C, Chatterjee K, Forrester JS et al. (1973) Optimal level of filling pressure in the left side of the heart in acute myocardial infarction. N Engl J Med 289: 1263–6

    Article  PubMed  CAS  Google Scholar 

  8. Her C, Mandy S, Bairamian M (2005) Increased pulmonary venous resistance contributes to increased pulmonary artery diastolic-pulmonary wedge pressure gradient in acute respiratory distress syndrome. Anesthesiology 102: 574–80

    Article  PubMed  Google Scholar 

  9. Sun Q, Rogiers P, Pauwels D et al. (2002) Comparison of continuous thermodilution and bolus cardiac output measurements in septic shock. Intensive Care Med JID-7704851 28: 1276–80

    Article  Google Scholar 

  10. Bendjelid K, Schutz N, Suter PM et al. (2006) Continuous cardiac output monitoring after cardiopulmonary bypass: a comparison with bolus thermodilution measurement. Intensive Care Med 32: 919–22

    Article  PubMed  Google Scholar 

  11. Gilbert EM, Haupt MT, Mandanas RY et al. (1986) The effect of fluid loading, blood transfusion and catecholamine infusion on oxygen delivery and consumption in patients with sepsis. Am Rev Respir Dis 134: 873–8

    PubMed  CAS  Google Scholar 

  12. Vincent JL, Roman A, De Backer D et al. (1990) Oxygen uptake/supply dependency: Effects of short-term dobutamine infusion. Am Rev Respir Dis 142: 2–8

    PubMed  CAS  Google Scholar 

  13. Archie J (1981) Mathematic coupling of data: A common source of error. Ann Surg 193: 296–303

    Article  PubMed  Google Scholar 

  14. Ronco JJ, Fenwick JC, Wiggs BR et al. (1993) Oxygen consumption is independent of increases in oxygen delivery by dobutamine in septic patients who have normal or increased plasma lactate. Am Rev Respir Dis 147: 25–31

    PubMed  CAS  Google Scholar 

  15. Squara P (2004) Matching total body oxygen consumption and delivery: A crucial objective? Intensive Care Med 30: 2170–9

    Article  PubMed  Google Scholar 

  16. Teboul JL, Graini L, Boujdaria R et al. (1993) Cardiac index vs oxygen-derived parameters for rational use of dobutamine in patients with congestive heart failure. Chest 103: 81–5

    Article  PubMed  CAS  Google Scholar 

  17. Boyd O, Grounds M, Bennett ED (1993) A randomized clinical trial of the effect of deliberate perioperative increase of oxygen delivery on mortality in high-risk surgical patients. JAMA 270: 2699–707

    Article  PubMed  CAS  Google Scholar 

  18. Pearse R, Dawson D, Fawcett J et al. (2005) Early goal directed therapy following major surgery reduces complicationjs and duration of hospital stay. A randomized, controlled trial. Crit Care 9: R687–93

    Article  PubMed  Google Scholar 

  19. Wilson J, Woods I, Fawcett J et al. (1999) Reducing the risk of major elective surgery: Randomised controlled trial of preoperative optimisation of oxygen delivery. BMJ 318: 1099–103

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag France

About this chapter

Cite this chapter

De Backer, D., Teboul, J.L. (2007). Le cathéter artériel pulmonaire. In: Les techniques de monitorage hémodynamique en réanimation. Le point sur .... Springer, Paris. https://doi.org/10.1007/978-2-287-71154-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-2-287-71154-1_3

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-287-71153-4

  • Online ISBN: 978-2-287-71154-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics