Skip to main content

Évaluation de la réponse au remplissage vasculaire

  • Chapter
  • 543 Accesses

Part of the book series: Le point sur ... ((POINT))

Abstrait

Pendant de nombreuses années, la gestion du remplissage vasculaire en réanimation a reposé essentiellement sur le concept de fluid challenge (1). Il s’agit d’une évaluation a posteriori de la réponse au remplissage, basée sur un monitorage invasif du débit cardiaque et des pressions intracardiaques (1). Une expansion volémique est jugée efficace lorsqu’elle entraîne une augmentation significative du débit cardiaque associée à une faible augmentation des pressions de remplissage, le coeur fonctionnant alors sur la portion raide de la courbe de Starling (2); elle est jugée inefficace lorsqu’elle n’entraîne qu’une augmentation modeste voire nulle du débit cardiaque mais importante des pressions de remplissage, le coeur fonctionnant alors sur la portion plate de la courbe de Starling (2). Cette attitude a été rendue nécessaire par l’absence de paramètres hémodynamiques permettant de prédire fidèlement l’efficacité du remplissage. Historiquement, les paramètres évaluant la précharge cardiaque (droite ou gauche) avaient été préconisés pour guider le remplissage vasculaire. La pression veineuse centrale (PVC), comme la pression artérielle pulmonaire d’occlusion, ont été montrées insuffisamment fiables pour prédire le bénéfice hémodynamique du remplissage vasculaire (3, 4). Les dimensions ventriculaires ne le sont pas davantage (5, 6). Si l’efficacité de l’expansion volémique reste vraisemblable pour les valeurs très basses de précharge parfois rencontrées chez les patients non encore réanimés (7), l’attitude basée sur l’analyse des marqueurs statiques de précharge cardiaque est peu recommandable, une fois passées les toutes premières heures de la réanimation hémodynamique.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Vincent JL, Weill MH (2006) Fluid challenge revisited. Crit Care Med 34: 1333–7

    Article  PubMed  Google Scholar 

  2. Michard F, Teboul JL (2000) Using heart-lung interactions to assess fluid responsiveness during mechanical ventilation. Crit Care 4: 282–9

    Article  PubMed  CAS  Google Scholar 

  3. Michard F, Teboul JL (2002) Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. Chest 121: 2000–8

    Article  PubMed  Google Scholar 

  4. Osman D, Ridel C, Ray P et al. (2007) Cardiac filling pressures are not appropriate to predict hemodynamic response to volume challenge. Crit Care Med

    Google Scholar 

  5. Tavernier B, Makhotine O, Lebuffe G et al. (1998) Systolic pressure variation as a guide to fluid therapy in patients with sepsis-induced hypotension. Anesthesiology 89: 1313–21

    Article  PubMed  CAS  Google Scholar 

  6. Feissel M, Michard F, Mangin I et al. (2001) Respiratory changes in aortic blood velocity as an indicator of fluid responsiveness in ventilated patients with septic shock. Chest 119: 867–73

    Article  PubMed  CAS  Google Scholar 

  7. Teboul JL et le groupe d’experts de la SRLF (2004) Indicateurs du remplissage vasculaire au cours de l’insuffisance circulatoire. Réanimation 13: 255–63

    Article  Google Scholar 

  8. Monnet X, Teboul JL (2006) Invasive measures of left ventricular preload. Curr Opin Crit Care 12: 235–40

    Article  PubMed  Google Scholar 

  9. Vieillard-Baron A, Chergui K, Augarde R et al. (2003) Cyclic changes in arterial pulse during respiratory support revisited by Doppler echocardiography. Am J Respir Crit Care Med 168: 671–6

    Article  PubMed  Google Scholar 

  10. Vieillard-Baron A, Augarde R, Prin S et al. (2001) Influence of superior vena caval zone condition on cyclic changes in right ventricular outflow during respiratory support. Anesthesiology 95: 1083–8

    Article  PubMed  CAS  Google Scholar 

  11. Vieillard-Baron A, Chergui K, Rabiller A et al. (2004) Superior vena caval collapsibility as a gauge of volume status in ventilated septic patients. Intensive Care Med 30: 1734–9

    PubMed  Google Scholar 

  12. Perel A, Pizov R, Cotev S (2007) Systolic blood pressure variation is a sensitive indicator of hypovolemia in ventilated dogs subjected to graded hemorrhage. Anesthesiology 67: 498–502

    Google Scholar 

  13. Buda AJ, Pinsky MR, Ingels NB et al. (1979) Effect of intrathoracic pressure on left ventricular performance. N Engl J Med 301: 453–9

    Article  PubMed  CAS  Google Scholar 

  14. Massumi RA, Mason DT, Vera Z et al. (1973) Reversed pulsus paradoxus. N Engl J Med 289: 1272–5

    Article  PubMed  CAS  Google Scholar 

  15. Coriat P, Vrillon M, Perel A et al. (1994) A comparison of systolic blood pressure variations and echocardiographic estimates of end-diastolic left ventricular size in patients after aortic surgery. Anesth Analg 78: 46–53

    Article  PubMed  CAS  Google Scholar 

  16. Michard F, Boussat S, Chemla D et al. (2000) Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med 162: 134–8

    PubMed  CAS  Google Scholar 

  17. Kramer A, Zygun D, Hawes H et al. (2004) Pulse pressure variation predicts fluid responsiveness following coronary artery bypass surgery. Chest 126: 1563–8

    Article  PubMed  Google Scholar 

  18. Bendjelid K, Suter PM, Romand JA (2004) The respiratory change in pre-ejection period: a new method to predict fluid responsiveness. J Appl Physiol 96: 337–42

    Article  PubMed  Google Scholar 

  19. Hofer CK, Muller SM, Furrer L et al. (2005) Stroke volume and pulse pressure variation for prediction of fluid responsiveness in patients undergoing off-pump coronary artery bypass grafting. Chest 128: 848–54

    Article  PubMed  Google Scholar 

  20. Preisman S, Kogan S, Berkenstadt H et al. (2005) Predicting fluid responsiveness in patients undergoing cardiac surgery: functional haemodynamic parameters including the Respiratory Systolic Variation Test and static preload indicators. Br J Anaesth 95: 746–55

    Article  PubMed  CAS  Google Scholar 

  21. Heenen S, de Backer D, Vincent JL (2006) How can the response to volume expansion in patients with spontaneous respiratory movements be predicted? Crit Care 10: R102

    Article  PubMed  Google Scholar 

  22. Feissel M, Badie J, Merlani PG et al. (2005) Pre-ejection period variations predict the fluid responsiveness of septic ventilated patients. Crit Care Med 33: 2534–9

    Article  PubMed  Google Scholar 

  23. Monnet X, Rienzo M, Osman D et al. (2006) Passive leg raising predicts fluid responsiveness in the critically ill. Crit Care Med 34: 1402–7

    Article  PubMed  Google Scholar 

  24. Charron C, Fessenmeyer C, Cosson C et al. (2006) The influence of tidal volume on the dynamic variables of fluid responsiveness in critically ill patients. Anesth Analg 102: 1511–7

    Article  PubMed  Google Scholar 

  25. Lafanechère A, Pene F, Goulenok C et al. (2006) Changes in aortic blood flow induced by passive leg raising predict fluid responsiveness in critically ill patients. Crit Care 10: R132

    Article  PubMed  Google Scholar 

  26. Natalini G, Rosano A, Taranto M et al. (2006) Arterial versus plethysmographic dynamic indices to test fluid responsiveness for testing fluid administration in hypotensive patients: a clinical trial. Anesth Analg 103: 1478–84

    Article  PubMed  Google Scholar 

  27. Solus-Biguenet H, Fleyfel M, Tavernier B et al. (2006) Non-invasive prediction of fluid responsiveness during major hepatic surgery. Br J Anaesth 97: 808–16

    Article  PubMed  CAS  Google Scholar 

  28. Huntsman LL, Stewart DK, Barnes SR et al. (1983) Non-invasive Doppler determination of cardiac output in man. Clinical validation. Circulation 67: 593–602

    PubMed  CAS  Google Scholar 

  29. Slama M, Masson H, Teboul JL et al. (2002) Respiratory variations of aortic VTI: A new index of hypovolemia and fluid responsiveness. Am J Physiol (Heart Circ Physiol) 283: H 1729–33

    Google Scholar 

  30. Monnet X, Rienzo M, Osman D et al. (2005) Esophageal Doppler monitoring predicts fluid responsiveness in critically ill ventilated patients. Intensive Care Med 31: 1195–201

    Article  PubMed  Google Scholar 

  31. Reuter DA, Felbinger TW, Schmidt C et al. (2002) Stroke volume variations for assessment of cardiac responsiveness to volume loading in mechanically ventilated patients after cardiac surgery. Intensive Care Med 28: 392–8

    Article  PubMed  Google Scholar 

  32. Michard F, Chemla D, Richard C et al. (1999) Clinical use of respiratory changes in arterial pressure to monitor the hemodynamic effects of PEEP. Am J Respir Crit Care Med 159: 935–9

    PubMed  CAS  Google Scholar 

  33. Pizov R, Ya’ari Y, Perel A (1989) The arterial pressure waveform during acute ventricular failure and synchronized external chest compression. Anesth Analg 68: 150–6

    PubMed  CAS  Google Scholar 

  34. Guyton AC, Lindsey AW, Abernathy B et al. (1957) Venous return at various right atrial pressures and the normal venous return curve. Am J Physiol 189: 609–15

    PubMed  CAS  Google Scholar 

  35. Vieillard-Baron A, Charron C, Chergui K et al. (2006) Bedside echocardiographic evaluation of hemodynamics in sepsis: Is a qualitative evaluation sufficient? Intensive Care Med (in press)

    Google Scholar 

  36. Barbier C, Loubieres Y, Schmit C et al. (2004) Respiratory changes in inferior vena cava diameter are helpful in predicting fluid responsiveness in ventilated septic patients. Intensive Care Med 30: 1740–6

    PubMed  Google Scholar 

  37. Feissel M, Michard F, Faller JP et al. (2004) The respiratory variation in inferior vena cava diameter as a guide to fluid therapy. Intensive Care Med 30: 1834–7

    Article  PubMed  Google Scholar 

  38. Fessler HE, Brower RG, Wise RA et al. (1992) Effects of positive end-expiratory pressure on the canine venous return curve. Am Rev Respir Dis 146: 4–10

    PubMed  CAS  Google Scholar 

  39. Cholley BP, Vieillard-Baron A, Mebazaa A (2006) Echocardiography in the ICU: time for widespread use! Intensive Care Med 32: 9–10

    Article  PubMed  Google Scholar 

  40. De Backer D, Heenen S, Piagnerelli M et al. (2005) Pulse pressure variations to predict fluid responsiveness: influence of tidal volume. Intensive Care Med 31: 517–23

    Article  PubMed  Google Scholar 

  41. Teboul JL, Vieillard-Baron A (2005) Clinical value of pulse pressure variations in ARDS. Still an unresolved issue? Intensive Care Med 31: 499–500

    Article  PubMed  Google Scholar 

  42. Rutlen DL, Wackers FJT, Zaret BL (1981) Radionuclide assessment of peripheral intravascular capacity: a technique to measure intravascular volumes changes in the capacitance circulation in man. Circulation 64: 146–52

    PubMed  CAS  Google Scholar 

  43. Reich DL, Konstadt SN, Raissi S, Hubbard M, Thys DM (1989) Trendelenburg position and passive leg raising do not significantly improve cardiopulmonary performance in the anesthetized patient with coronary artery disease. Crit Care Med 17: 313–17

    Article  PubMed  CAS  Google Scholar 

  44. Thomas M, Shillingford J (1965) The circulatory response to a standard postural change in ischaemic heart disease. Br Heart J 27: 17–27

    Article  PubMed  CAS  Google Scholar 

  45. Rocha P, Lemaigre D, Leroy M et al. (1987) Nitroglycerin-induced decrease of carbon monoxide diffusion capacity in acute myocardial infarction reversed by elevating legs. Crit Care Med 15: 131–3

    Article  PubMed  CAS  Google Scholar 

  46. Takagi S, Yokota M, Iwase M et al. (1989) The important role of left ventricular relaxation and left atrial pressure in the left ventricular filling velocity profile. Am Heart J 118: 954–62

    Article  PubMed  CAS  Google Scholar 

  47. Chihara E, Hashimoto S, Kinoshita T et al. (1992) Elevated mean systemic filling pressure due to intermittent positive-pressure ventilation. Am J Physiol 262: H1116–21

    PubMed  CAS  Google Scholar 

  48. Wong DH, Tremper KK, Zaccari J et al. (1988) Acute cardiovascular response to passive leg raising. Crit Care Med 16: 123–5

    Article  PubMed  CAS  Google Scholar 

  49. Gaffney FA, Bastian BC, Thal ER et al. (1982) Passive leg raising does not produce a significant or sustained autotransfusion effect. J Trauma 22: 190–3

    Article  PubMed  CAS  Google Scholar 

  50. Boulain T, Achard JM, Teboul JL et al. (2002) Changes in BP induced by passive leg raising predict response to fluid loading in critically ill patients. Chest 12: 1245–52

    Article  Google Scholar 

  51. Lamia B, Ochagavia A, Monet X et al. (2007) Echocardiographic prediction of volume responsiveness in critically ill patients with spontaneous breathing activity. Intensive Care Med (in press)

    Google Scholar 

  52. Ridel C, Lamia B, Monnet X et al. (2006) Passive leg raising and volume responsiveness during spontaneous breathing: pulse contour evaluation. Intensive Care Med 32(supplement 1): S82

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag France

About this chapter

Cite this chapter

Vieillard-Baron, A., Teboul, J.L. (2007). Évaluation de la réponse au remplissage vasculaire. In: Les techniques de monitorage hémodynamique en réanimation. Le point sur .... Springer, Paris. https://doi.org/10.1007/978-2-287-71154-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-2-287-71154-1_11

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-287-71153-4

  • Online ISBN: 978-2-287-71154-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics