Skip to main content

Part of the book series: Le point sur … ((POINT))

  • 560 Accesses

Abstrait

Considérant le rôle physiologique du rein dans l’homéostasie de l’organisme pour la gestion de l’eau, du sodium, du calcium, des métabolites azotés et de l’équilibre acido-basique, l’implication du rein dans la réaction inflammatoire ne va pas de soi (1). En effet, contrairement au poumon ou au foie, le parenchyme rénal ne contient pas une grande population de macrophages résidents ou de cellules immunitaires. Excepté l’endothélium vasculaire et les cellules mésangiales, le tissu rénal ne devrait pas être un site majeur de conflit inflammatoire au cours du sepsis. De surcroît, le rein participe de façon minime à la clairance des micro-organismes, qui est principalement assurée par le foie, le poumon et la rate (2). Le rein est par ailleurs souvent décrit comme un spectateur innocent lésé au cours d’événements systémiques. Ces prémisses vont cependant être corrigées au fil des études.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Backhed F, Soderhall M, Ekman P et al. (2001) Induction of innate immune responses by Escherichia coli and purified lipopolysaccharide correlate with organ-and cell-specific expression of Toll-like receptors within the human urinary tract. Cell Microbiol 3: 153–8

    Article  PubMed  CAS  Google Scholar 

  2. Mathison JC, Ulevitch RJ (1979) The clearance, tissue distribution, and cellular localization of intravenously injected lipopolysaccharide in rabbits. J Immunol 123: 2133–2143

    PubMed  CAS  Google Scholar 

  3. Wan L, Bellomo R, Di Giantomasso D, Ronco C (2003) The pathogenesis of septic acute renal failure. Curr Opin Crit Care 9: 496–502

    Article  PubMed  Google Scholar 

  4. De Vriese AS (2003) Prevention and treatment of acute renal failure in sepsis. J Am Soc Nephrol 14: 792–805

    Article  PubMed  Google Scholar 

  5. De Vriese AS, Bourgeois M (2003) Pharmacologic treatment of acute renal failure in sepsis. Curr Opin Crit Care 9: 474–80

    Article  PubMed  Google Scholar 

  6. Bellomo R, Ronco C, Kellum JA et al. (2004) Acute renal failure-definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care 8: R204–12

    Article  PubMed  Google Scholar 

  7. Rangel-Frausto MS, Pittet D, Costigan M et al. (1995) The natural history of the systemic inflammatory response syndrome (SIRS). A prospective study [see comments]. JAMA 273: 117–23

    Article  PubMed  CAS  Google Scholar 

  8. Levy MM, Fink MP, Marshall JC et al. (2003) SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med 31: 1250–6

    Article  PubMed  Google Scholar 

  9. Neveu H, Kleinknecht D, Brivet F et al. (1996) Prognostic factors in acute renal failure due to sepsis. Results of a prospective multicentre study. Nephrol Dial Transplant 11: 293–9

    PubMed  CAS  Google Scholar 

  10. Uchino S, Kellum JA, Bellomo R, et al. (2005) Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA 294: 813–8

    Article  PubMed  CAS  Google Scholar 

  11. Fu Y, Xie C, Yan M et al. (2005) The lipopolysaccharide-triggered mesangial transcriptome: Evaluating the role of interferon regulatory factor-1. Kidney Int 67: 1350–61

    Article  PubMed  CAS  Google Scholar 

  12. Baud L, Fouqueray B, Bellocq A (1998) Switching off renal inflammation by anti-inflammatory mediators: the facts, the promise and the hope. Kidney Int 53: 1118–26

    Article  PubMed  CAS  Google Scholar 

  13. Pan CG, Bresnahan BA, Albrightson CR et al. (1996) Cytokine inhibition preserves renal hemodynamic function following mesangial cell immune injury. J Investig Med 44: 375–81

    PubMed  CAS  Google Scholar 

  14. Schilling JD, Martin SM, Hunstad DA et al. (2003) CD14-and Toll-like receptor-dependent activation of bladder epithelial cells by lipopolysaccharide and type 1 piliated Escherichia coli. Infect Immun 71: 1470–80

    Article  PubMed  CAS  Google Scholar 

  15. El-Achkar TM, Huang X, Plotkin Z et al. (2006) Sepsis induces changes in the expression and distribution of Toll-like receptor 4 in the rat kidney. Am J Physiol Renal Physiol 290: F 1034–43

    Article  CAS  Google Scholar 

  16. Kruger S, Brandt E, Klinger M, Kreft B (2000) Interleukin-8 secretion of cortical tubular epithelial cells is directed to the basolateral environment and is not enhanced by apical exposure to Escherichia coli. Infect Immun 68: 328–34

    PubMed  CAS  Google Scholar 

  17. Zager RA, Johnson AC, Hanson SY, Lund S (2006) Acute nephrotoxic and obstructive injury primes the kidney to endotoxin-driven cytokine/chemokine production. Kidney Int

    Google Scholar 

  18. Kone BC, Baylis C (1997) Biosynthesis and homeostatic roles of nitric oxide in the normal kidney. Am J Physiol 272: F561–78

    PubMed  CAS  Google Scholar 

  19. Wang W, Mitra A, Poole B et al. (2004) Endothelial nitric oxide synthase-deficient mice exhibit increased susceptibility to endotoxin-induced acute renal failure. Am J Physiol Renal Physiol 287: F1044–8

    Article  PubMed  CAS  Google Scholar 

  20. Ahn KY, Mohaupt MG, Madsen KM, Kone BC (1994) In situ hybridization localization of mRNA encoding inducible nitric oxide synthase in rat kidney. Am J Physiol 267: F748–57

    PubMed  CAS  Google Scholar 

  21. Westberg G, Shultz PJ, Raij L (1994) Exogenous nitric oxide prevents endotoxin-induced glomerular thrombosis in rats. Kidney Int 46: 711–6

    Article  PubMed  CAS  Google Scholar 

  22. Lefer AM, Lefer DJ (1999) Nitric oxide. II. Nitric oxide protects in intestinal inflammation. Am J Physiol 276: G572–5

    PubMed  CAS  Google Scholar 

  23. Ling H, Edelstein C, Gengaro P et al. (1999) Attenuation of renal ischemia-reperfusion injury in inducible nitric oxide synthase knockout mice. Am J Physiol 277: F383–90

    PubMed  CAS  Google Scholar 

  24. Zager RA (1986) Escherichia coli endotoxin injections potentiate experimental ischemic renal injury. Am J Physiol 251: F988–94

    PubMed  CAS  Google Scholar 

  25. Zager RA, Burkhart KM, Gmur DJ (1995) Postischemic proximal tubular resistance to oxidant stress and Ca2+ ionophore-induced attack. Implications for reperfusion injury. Lab Invest 72: 592–600

    PubMed  CAS  Google Scholar 

  26. Kluth DC, Erwig LP, Rees AJ (2004) Multiple facets of macrophages in renal injury. Kidney Int 66: 542–57

    Article  PubMed  CAS  Google Scholar 

  27. MacMicking J, Xie QW, Nathan C (1997) Nitric oxide and macrophage function. Ann Rev Immunol 15: 323–50

    Article  CAS  Google Scholar 

  28. Fadok VA, Bratton DL, Konowal A et al. (1998) Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest 101: 890–8

    PubMed  CAS  Google Scholar 

  29. Lan HY, Nikolic-Paterson DJ, Mu W, Atkins RC (1996) Local macrophage proliferation in progressive renal injury. Contrib Nephrol 118: 100–8

    PubMed  CAS  Google Scholar 

  30. Bellingan GJ, Xu P, Cooksley H et al. (2002) Adhesion molecule-dependent mechanisms regulate the rate of macrophage clearance during the resolution of peritoneal inflammation. J Exp Med 196: 1515–21

    Article  PubMed  CAS  Google Scholar 

  31. Randolph GJ, Sanchez-Schmitz G, Liebman RM, Schakel K (2002) The CD16(+) (FcgammaRIII(+)) subset of human monocytes preferentially becomes migratory dendritic cells in a model tissue setting. J Exp Med 196: 517–27

    Article  PubMed  CAS  Google Scholar 

  32. Thijs A, Thijs LG (1998) Pathogenesis of renal failure in sepsis. Kidney Int Suppl 66: S34–7

    CAS  Google Scholar 

  33. Khan RZ, Badr KF (1999) Endotoxin and renal function: perspectives to the understanding of septic acute renal failure and toxic shock [editorial]. Nephrol Dial Transplant 14: 814–8

    Article  PubMed  CAS  Google Scholar 

  34. Schaer GL, Fink MP, Chernow B, Ahmed S, et al. (1990) Renal hemodynamics and prostaglandin E2 excretion in a nonhuman primate model of septic shock. Crit Care Med 18: 52–9

    Article  PubMed  CAS  Google Scholar 

  35. Kikeri D, Pennell JP, Hwang KH et al. (1986) Endotoxemic acute renal failure in awake rats. Am J Physiol 250: F1098–106

    PubMed  CAS  Google Scholar 

  36. Lugon JR, Boim MA, Ramos OL et al. (1989) Renal function and glomerular hemodynamics in male endotoxemic rats. Kidney Int 36: 570–5

    Article  PubMed  CAS  Google Scholar 

  37. Millar CG, Thiemermann C (1997) Intrarenal haemodynamics and renal dysfunction in endotoxaemia: effects of nitric oxide synthase inhibition. Br J Pharmacol 121: 1824–30

    Article  PubMed  CAS  Google Scholar 

  38. Albert M, Losser MR, Hayon D et al. (2004) Systemic and renal macro-and microcirculatory responses to arginine vasopressin in endotoxic rabbits. Crit Care Med 32: 1891–8

    Article  PubMed  CAS  Google Scholar 

  39. Cumming AD, Kline R, Linton AL (1988) Association between renal and sympathetic responses to nonhypotensive systemic sepsis. Crit Care Med 16: 1132–7

    Article  PubMed  CAS  Google Scholar 

  40. Spain DA, Wilson MA, Garrison RN (1994) Nitric oxide synthase inhibition exacerbates sepsis-induced renal hypoperfusion. Surgery 116: 322–30; discussion 330-1

    PubMed  CAS  Google Scholar 

  41. van Lambalgen AA, Bouriquet N, Casellas D (1996) Effects of endotoxin on tone and pressure-responsiveness of preglomerular juxtamedullary vessels. Pflugers Arch 432: 574–7

    Article  PubMed  Google Scholar 

  42. Savin VJ, Patak RV, Marr G et al. (1983) Glomerular ultrafiltration coefficient after ischemic renal injury in dogs. Circ Res 53: 439–47

    PubMed  CAS  Google Scholar 

  43. Cohen JJ, Black AJ, Wertheim SJ (1990) Direct effects of endotoxin on the function of the isolated perfused rat kidney. Kidney Int 37: 1219–26

    Article  PubMed  CAS  Google Scholar 

  44. Xia Y, Feng L, Yoshimura T, Wilson CB (1993) LPS-induced MCP-1, IL-1 beta, and TNF-alpha mRNA expression in isolated erythrocyte-perfused rat kidney. Am J Physiol 264: F774–80

    PubMed  CAS  Google Scholar 

  45. Bourgeois N, Reuse C, Boeynaems JM et al. (1987) Effects of endotoxin on hemodynamics of isolated dog kidney. Adv Exp Med Biol 212: 81–5

    PubMed  CAS  Google Scholar 

  46. Kelly KJ, Molitoris BA (2000) Acute renal failure in the new millennium: time to consider combination therapy. Semin Nephrol 20: 4–19

    PubMed  CAS  Google Scholar 

  47. Lefer AM, Lefer DJ (1993) Pharmacology of the endothelium in ischemia-reperfusion and circulatory shock. Annu Rev Pharmacol Toxicol 33: 71–90

    Article  PubMed  CAS  Google Scholar 

  48. Lien YH, Lai LW, Silva AL (2003) Pathogenesis of renal ischemia/reperfusion injury: lessons from knockout mice. Life Sci 74: 543–52

    Article  PubMed  CAS  Google Scholar 

  49. Goligorsky MS (2005) Endothelial cell dysfunction: can’t live with it, how to live without it. Am J Physiol Renal Physiol 288: F871–80

    Article  PubMed  CAS  Google Scholar 

  50. Wilhelm SM, Simonson MS, Robinson AV et al. (1999) Endothelin up-regulation and localization following renal ischemia and reperfusion. Kidney Int 55: 1011–8

    Article  PubMed  CAS  Google Scholar 

  51. Sutton TA, Mang HE, Campos SB et al. (2003) Injury of the renal microvascular endothelium alters barrier function after ischemia. Am J Physiol Renal Physiol 285: F191–8

    PubMed  CAS  Google Scholar 

  52. Padanilam BJ (2003) Cell death induced by acute renal injury: a perspective on the contributions of apoptosis and necrosis. Am J Physiol Renal Physiol 284: F608–27

    PubMed  CAS  Google Scholar 

  53. Goligorsky MS, Lieberthal W, Racusen L, Simon EE (1993) Integrin receptors in renal tubular epithelium: new insights into pathophysiology of acute renal failure. Am J Physiol 264: F1–8

    PubMed  CAS  Google Scholar 

  54. Molitoris BA, Ashworth SL, Sutton TA (2001) Ischemia-induced derangements in the actin cytoskeleton: mechanism and functional significance. Mechanisms of Organ Dysfunction in Critical Illness. FM and ET Heidelberg, Germany, Springer-Verlag: 227–238

    Google Scholar 

  55. Molitoris BA, Marrs J (1999) The role of cell adhesion molecules in ischemic acute renal failure. Am J Med 106: 583–92

    Article  PubMed  CAS  Google Scholar 

  56. Kribben A, Wieder ED, Wetzels JF et al. (1994) Evidence for role of cytosolic free calcium in hypoxia-induced proximal tubule injury. J Clin Invest 93: 1922–9

    PubMed  CAS  Google Scholar 

  57. Herget-Rosenthal S, Hosford M, Kribben A et al. (2001) Characteristics of EYFP-actin and visualization of actin dynamics during ATP depletion and repletion. Am J Physiol Cell Physiol 281: C1858–70

    PubMed  CAS  Google Scholar 

  58. Klausner JM, Paterson IS, Goldman G et al. (1989) Postischemic renal injury is mediated by neutrophils and leukotrienes. Am J Physiol 256: F794–802

    PubMed  CAS  Google Scholar 

  59. Takasaki J, Kawauchi Y, Urasaki T et al. (1998) Antibodies against type II phospholipase A2 prevent renal injury due to ischemia and reperfusion in rats. FEBS Lett 440: 377–81

    Article  PubMed  CAS  Google Scholar 

  60. Rodriguez-Iturbe B, Vaziri ND, Herrera-Acosta J, Johnson RJ (2004) Oxidative stress, renal infiltration of immune cells, and salt-sensitive hypertension: all for one and one for all. Am J Physiol Renal Physiol 286: F606–16

    Article  PubMed  CAS  Google Scholar 

  61. Cuzzocrea S, Riley DP, Caputi AP, Salvemini D (2001) Antioxidant therapy: a new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury. Pharmacol Rev 53(1): 135–59

    PubMed  CAS  Google Scholar 

  62. Springer TA (1994) Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76: 301–14

    Article  PubMed  CAS  Google Scholar 

  63. Marks RM, Todd RF, 3rd, Ward PA (1989) Rapid induction of neutrophil-endothelial adhesion by endothelial complement fixation. Nature 339: 314–7

    Article  PubMed  CAS  Google Scholar 

  64. Weisman HF, Bartow T, Leppo MK et al. (1990) Soluble human complement receptor type 1: in vivo inhibitor of complement suppressing post-ischemic myocardial inflammation and necrosis. Science 249: 146–51

    Article  PubMed  CAS  Google Scholar 

  65. Heinzelmann M, Mercer-Jones MA, Passmore JC (1999) Neutrophils and renal failure. Am J Kidney Dis 34: 384–99

    PubMed  CAS  Google Scholar 

  66. Kelly KJ, Williams WW, Jr., Colvin RB, Bonventre JV (1994) Antibody to intercellular adhesion molecule 1 protects the kidney against ischemic injury. Proc Natl Acad Sci USA 91: 812–6

    Article  PubMed  CAS  Google Scholar 

  67. Rabb H, Mendiola CC, Saba SR et al. (1995) Antibodies to ICAM-1 protect kidneys in severe ischemic reperfusion injury. Biochem Biophys Res Commun 211: 67–73

    Article  PubMed  CAS  Google Scholar 

  68. Kelly KJ, Williams WW, Jr., Colvin RB et al. (1996) Intercellular adhesion molecule-1-deficient mice are protected against ischemic renal injury. J Clin Invest 97: 1056–63

    PubMed  CAS  Google Scholar 

  69. Dragun D, Tullius SG, Park JK et al. (1998) ICAM-1 antisense oligodesoxynucleotides prevent reperfusion injury and enhance immediate graft function in renal transplantation. Kidney Int 54: 590–602

    Article  PubMed  CAS  Google Scholar 

  70. Haug CE, Colvin RB, Delmonico FL et al. (1993) A phase I trial of immunosuppression with anti-ICAM-1 (CD54) mAb in renal allograft recipients. Transplantation 55: 766–72; discussion 772-3

    Article  PubMed  CAS  Google Scholar 

  71. Salmela K, Wramner L, Ekberg H et al. (1999) A randomized multicenter trial of the anti-ICAM-1 monoclonal antibody (enlimomab) for the prevention of acute rejection and delayed onset of graft function in cadaveric renal transplantation: a report of the European Anti-ICAM-1 Renal Transplant Study Group. Transplantation 67: 729–36

    Article  PubMed  CAS  Google Scholar 

  72. Bernard GR, Vincent JL, Laterre PF et al. (2001) Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med 344: 699–709

    Article  PubMed  CAS  Google Scholar 

  73. Joyce DE, Gelbert L, Ciaccia A et al. (2001) Gene expression profile of antithrombotic protein c defines new mechanisms modulating inflammation and apoptosis. J Biol Chem 276: 11199–203

    Article  PubMed  CAS  Google Scholar 

  74. Cheng T, Liu D, Griffin JH et al. (2003) Activated protein C blocks p53-mediated apoptosis in ischemic human brain endothelium and is neuroprotective. Nat Med 9: 338–42

    Article  PubMed  CAS  Google Scholar 

  75. Fauvel H, Marchetti P, Chopin C et al. (2001) Differential effects of caspase inhibitors on endotoxin-induced myocardial dysfunction and heart apoptosis. Am J Physiol Heart Circ Physiol 280: H1608–14

    PubMed  CAS  Google Scholar 

  76. Neviere R, Fauvel H, Chopin C et al. (2001) Caspase inhibition prevents cardiac dysfunction and heart apoptosis in a rat model of sepsis. Am J Respir Crit Care Med 163: 218–25

    PubMed  CAS  Google Scholar 

  77. Cauwels A, Janssen B, Waeytens A et al. (2003) Caspase inhibition causes hyperacute tumor necrosis factor-induced shock via oxidative stress and phospholipase A2. Nat Immunol 4: 387–93

    Article  PubMed  CAS  Google Scholar 

  78. van den Berghe G, Wouters P, Weekers F et al. (2001) Intensive insulin therapy in the critically ill patients. N Engl J Med 345: 1359–67

    Article  PubMed  Google Scholar 

  79. Losser MR, Bernard C, Beaudeux JL et al. (1997) Glucose modulates hemodynamic, metabolic, and inflammatory responses to lipopolysaccharide in rabbits. J Appl Physiol 83: 1566–74

    PubMed  CAS  Google Scholar 

  80. Hansen TK, Thiel S, Wouters PJ et al. (2003) Intensive insulin therapy exerts antiinflammatory effects in critically ill patients and counteracts the adverse effect of low mannose-binding lectin levels. J Clin Endocrinol Metab 88: 1082–8

    Article  PubMed  CAS  Google Scholar 

  81. Allen DA, Harwood S, Varagunam M et al. (2003) High glucose-induced oxidative stress causes apoptosis in proximal tubular epithelial cells and is mediated by multiple caspases. Faseb J 17: 908–10

    PubMed  CAS  Google Scholar 

  82. Thadhani R, Pascual M, Bonventre JV (1996) Acute renal failure. N Engl J Med 334: 1448–60

    Article  PubMed  CAS  Google Scholar 

  83. Aronson S, Blumenthal R (1998) Perioperative renal dysfunction and cardiovascular anesthesia: concerns and controversies. J Cardiothorac Vasc Anesth 12: 567–86

    Article  PubMed  CAS  Google Scholar 

  84. Cottee DB, Saul WP (1996) Is renal dose dopamine protective or therapeutic? No. Crit Care Clin 12: 687–95

    Article  CAS  Google Scholar 

  85. Lassnigg A, Donner E, Grubhofer G et al. (2000) Lack of renoprotective effects of dopamine and furosemide during cardiac surgery. J Am Soc Nephrol 11: 97–104

    PubMed  CAS  Google Scholar 

  86. Holmes CL, Walley KR (2003) Bad medicine: low-dose dopamine in the ICU. Chest 123: 1266–75

    Article  PubMed  CAS  Google Scholar 

  87. Kellum JA, J MD (2001) Use of dopamine in acute renal failure: a meta-analysis. Crit Care Med 29: 1526–31

    Article  PubMed  CAS  Google Scholar 

  88. Piper SN, Kumle B, Maleck WH et al. (2003) Diltiazem may preserve renal tubular integrity after cardiac surgery. Can J Anaesth 50: 285–92

    PubMed  Google Scholar 

  89. Neumayer HH, Kunzendorf U, Schreiber M (1992) Protective effects of calcium antagonists in human renal transplantation. Kidney Int Suppl 36: S87–93

    Google Scholar 

  90. Ruggenenti P, Perico N, Mosconi L et al. (1993) Calcium channel blockers protect transplant patients from cyclosporine-induced daily renal hypoperfusion. Kidney Int 43: 706–11

    Article  PubMed  CAS  Google Scholar 

  91. Rahn KH, Barenbrock M, Fritschka E et al. (1999) Effect of nitrendipine on renal function in renal-transplant patients treated with cyclosporin: a randomised trial. Lancet 354: 1415–20

    Article  PubMed  CAS  Google Scholar 

  92. Neumayer HH, Junge W, Kufner A, Wenning A (1989) Prevention of radiocontrastmedia-induced nephrotoxicity by the calcium channel blocker nitrendipine: a prospective randomised clinical trial. Nephrol Dial Transplant 4: 1030–6

    PubMed  CAS  Google Scholar 

  93. Vesely DL (2003) Natriuretic peptides and acute renal failure. Am J Physiol Renal Physiol 285: F167–77

    PubMed  CAS  Google Scholar 

  94. Rahman SN, Kim GE, Mathew AS et al. (1994) Effects of atrial natriuretic peptide in clinical acute renal failure. Kidney Int 45: 1731–8

    Article  PubMed  CAS  Google Scholar 

  95. Allgren RL, Marbury TC, Rahman SN et al. (1997) Anaritide in acute tubular necrosis. Auriculin Anaritide Acute Renal Failure Study Group [see comments]. N Engl J Med 336: 828–34

    Article  PubMed  CAS  Google Scholar 

  96. Seta K, Hayashi T, Sugawara A et al. (1998) Atrial natriuretic peptide as a preload depressor in acute renal failure secondary to congestive heart failure. Ren Fail 20: 717–23

    PubMed  CAS  Google Scholar 

  97. Sward K, Valsson F, Odencrants P et al. (2004) Recombinant human atrial natriuretic peptide in ischemic acute renal failure: a randomized placebo-controlled trial. Crit Care Med 32: 1310–5

    Article  PubMed  CAS  Google Scholar 

  98. Meyer M, Richter R, Forssmann WG (1998) Urodilatin, a natriuretic peptide with clinical implications. Eur J Med Res 3: 103–110

    PubMed  CAS  Google Scholar 

  99. Kurnik BR, Allgren RL, Genter FC et al. (1998) Prospective study of atrial natriuretic peptide for the prevention of radiocontrast-induced nephropathy. Am J Kidney Dis 31: 674–80

    PubMed  CAS  Google Scholar 

  100. Lewis J, Salem MM, Chertow GM et al. (2000) Atrial natriuretic factor in oliguric acute renal failure. Anaritide Acute Renal Failure Study Group. Am J Kidney Dis 36: 767–74

    PubMed  CAS  Google Scholar 

  101. Brodsky SV, Yamamoto T, Tada T et al. (2002) Endothelial dysfunction in ischemic acute renal failure: rescue by transplanted endothelial cells. Am J Physiol Renal Physiol 282: F1140–9

    PubMed  CAS  Google Scholar 

  102. Lopez A, Lorente JA, Steingrub J et al. (2004) Multiple-center, randomized, placebo-controlled, double-blind study of the nitric oxide synthase inhibitor 546C88: effect on survival in patients with septic shock. Crit Care Med 32: 21–30

    Article  PubMed  CAS  Google Scholar 

  103. Brezis M, Heyman SN, Epstein FH (1994) Determinants of intrarenal oxygenation. II. Hemodynamic effects. Am J Physiol 267: F1063–8

    PubMed  CAS  Google Scholar 

  104. Sadovnikoff N (2001) Perioperative acute renal failure. Int Anesthesiol Clin 39: 95–109

    Article  PubMed  CAS  Google Scholar 

  105. Liano F, Gallego A, Pascual J et al. (1993) Prognosis of acute tubular necrosis: an extended prospectively contrasted study. Nephron 63: 21–31

    Article  PubMed  CAS  Google Scholar 

  106. Liano F, Pascual J (1996) Epidemiology of acute renal failure: a prospective, multicenter, community-based study. Madrid Acute Renal Failure Study Group. Kidney Int 50: 811–8

    Article  PubMed  CAS  Google Scholar 

  107. Rabl H, Khoschsorur G, Colombo T et al. (1993) A multivitamin infusion prevents lipid peroxidation and improves transplantation performance. Kidney Int 43: 912–7

    Article  PubMed  CAS  Google Scholar 

  108. Rhoden E, Teloken C, Lucas M et al. (2000) Protective effect of allopurinol in the renal ischemia-reperfusion in uninephrectomized rats. Gen Pharmacol 35: 189–93

    PubMed  CAS  Google Scholar 

  109. Birck R, Krzossok S, Markowetz F et al. (2003) Acetylcysteine for prevention of contrast nephropathy: meta-analysis. Lancet 362: 598–603

    Article  PubMed  CAS  Google Scholar 

  110. Kshirsagar AV, Poole C, Mottl A et al. (2004) N-acetylcysteine for the prevention of radiocontrast induced nephropathy: a meta-analysis of prospective controlled trials. J Am Soc Nephrol 15: 761–9

    Article  PubMed  CAS  Google Scholar 

  111. Witzgall R, Brown D, Schwarz C, Bonventre JV (1994) Localization of proliferating cell nuclear antigen, vimentin, c-Fos, and clusterin in the postischemic kidney. Evidence for a heterogenous genetic response among nephron segments, and a large pool of mitotically active and dedifferentiated cells. J Clin Invest 93: 2175–88

    Article  PubMed  CAS  Google Scholar 

  112. Humes HD, Cieslinski DA, Coimbra TM et al. (1989) Epidermal growth factor enhances renal tubule cell regeneration and repair and accelerates the recovery of renal function in postischemic acute renal failure. J Clin Invest 84: 1757–61

    PubMed  CAS  Google Scholar 

  113. Lemos FB, Ijzermans JN, Zondervan PE et al. (2003) Differential expression of heme oxygenase-1 and vascular endothelial growth factor in cadaveric and living donor kidneys after ischemia-reperfusion. J Am Soc Nephrol 14: 3278–87

    Article  PubMed  CAS  Google Scholar 

  114. Docherty NG, Perez-Barriocanal F, Balboa NE, Lopez-Novoa JM (2002) Transforming growth factor-beta1 (TGF-beta1): a potential recovery signal in the post-ischemic kidney. Ren Fail 24: 391–406

    Article  PubMed  CAS  Google Scholar 

  115. Franklin SC, Moulton M, Sicard GA et al. (1997) Insulin-like growth factor I preserves renal function postoperatively. Am J Physiol 272: F257–9

    PubMed  CAS  Google Scholar 

  116. Hirschberg R, Kopple J, Lipsett P et al. (1999) Multicenter clinical trial of recombinant human insulin-like growth factor I in patients with acute renal failure. Kidney Int 55: 2423–32

    Article  PubMed  CAS  Google Scholar 

  117. Hladunewich MA, Corrigan G, Derby GC et al. (2003) A randomized, placebo-controlled trial of IGF-1 for delayed graft function: a human model to study postischemic ARF. Kidney Int 64: 593–602

    Article  PubMed  CAS  Google Scholar 

  118. Jaber BL, Pereira BJ, Bonventre JV, Balakrishnan VS (2005) Polymorphism of host response genes: implications in the pathogenesis and treatment of acute renal failure. Kidney Int 67: 14–33

    Article  PubMed  CAS  Google Scholar 

  119. Liang M, Cowley AW, Jr., Hessner MJ et al. (2005) Transcriptome analysis and kidney research: toward systems biology. Kidney Int 67: 2114–22

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag France

About this chapter

Cite this chapter

Losser, MR. (2007). Rein et sepsis. In: Jacob, L. (eds) L’insuffisance rénale aiguë. Le point sur …. Springer, Paris. https://doi.org/10.1007/978-2-287-71152-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-2-287-71152-7_6

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-287-71151-0

  • Online ISBN: 978-2-287-71152-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics