Skip to main content

Marqueurs de souffrance rénale: Imagerie

  • Chapter
L’insuffisance rénale aiguë

Part of the book series: Le point sur … ((POINT))

  • 569 Accesses

Abstrait

De la diurèse à l’analyse protéomique urinaire, de très nombreux marqueurs de souffrance rénale peuvent être mis en évidence. Certains témoignent de l’altération de la fonction rénale globale (diurèse, créatinine, urée), d’autres traduisent la souffrance tubulaire ischémique (marqueurs tubulaires) en rapport avec une nécrose tubulaire aiguë (NTA), d’autres enfin sont en rapport avec des étiologies particulières de l’atteinte rénale (anticorps anti-membrane basale glomérulaire par exemple). Dans ce chapitre, nous nous focaliserons sur l’analyse critique des marqueurs de l’insuffisance rénale et sur les marqueurs de souffrance tubulaire ischémique puisque la NTA représente la cause la plus fréquente des insuffisances rénales aiguës (IRA) observées en réanimation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Herrington D, Drusano G, Smalls U, Standiford HC (1984) False elevation in serum creatinine levels. JAMA 252: 2962

    Article  PubMed  CAS  Google Scholar 

  2. Crocker H, Shephard MD, White GH (1988) Evaluation of an enzymatic method for determining creatinine in plasma. J Clin Pathol 41: 576–81

    Article  PubMed  CAS  Google Scholar 

  3. Du Cheyron D, Charbonneau P (2003) Marqueurs biologiques de l’insuffisance rénale aiguë. In: Robert R, Lameire N (ed) Insuffisance rénale aiguë en réanimation. Elsevier. p102–117

    Google Scholar 

  4. Moran SM, Myers BD (1985) Course of acute renal failure studied by a model of creatinine kinetics. Kidney Int 27: 928–37

    Article  PubMed  CAS  Google Scholar 

  5. Rosner MH, Bolton WK (2006) Renal function testing. Am J Kidney Dis 47: 174–83

    Article  PubMed  Google Scholar 

  6. Levey AS (1990) Measurement of renal function in chronic renal disease. Kidney Int 38: 167–84

    Article  PubMed  CAS  Google Scholar 

  7. Hannedouche T, Chantrel F, Richter S (2003) Comment évaluer la fonction rénale en réanimation ? In Robert R, Lameire N (ed) Insuffisance rénale aiguë en réanimation. Elsevier. 2003 p 61–76

    Google Scholar 

  8. Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16: 31–41

    Article  PubMed  CAS  Google Scholar 

  9. Levey AS, Bosch JP, Lewis JB, Greene T et al. (1999) A more accurate method to estimate glomerular filtration rate from serum creatinine: A new prediction equation. Ann Intern Med 130: 461–70

    PubMed  CAS  Google Scholar 

  10. Lewis J, Agodoa L, Cheek D, Greene T et al. (2001) Comparison of cross-sectional renal function measurements in African Americans with hypertensive nephrosclerosis and of primary formulas to estimate glomerular filtration rate. Am J Kidney Dis 38: 744–53

    PubMed  CAS  Google Scholar 

  11. Poge U, Gerhardt TM, Palmedo H et al. (2005) MDRD equations for estimation of GFR in renal transplant recipients. Am J Transplant 5: 1306–11

    Article  PubMed  Google Scholar 

  12. Coresh J, Astor BC, Greene T et al. (2003) Prevalence of chronic kidney disease and decreased kidney function in the adult US population: Third National Health and Nutrition Examination survey. Am J Kidney Dis 41: 1–12

    Article  PubMed  Google Scholar 

  13. Verhave JC (2005) Estimation of renal function in subjects with normal serum creatinine levels: influence of age and body mass index. Am J Kidney Dis 46: 233–41

    Article  PubMed  CAS  Google Scholar 

  14. Poggio ED, Nef PC, Wang X et al. (2005) Performance of the Cockcroft-Gault and modification of diet in renal disease equations in estimating GFR in ill hospitalised patients. Am J Kidney Dis 46: 242–52

    Article  PubMed  Google Scholar 

  15. Robert S, Zarowitz BJ, Peterson EL, Dumler F (1993) Predictibiliy of creatinine clearance estimates in critically ill patients. Crit Care Med 21: 1487–95

    Article  PubMed  CAS  Google Scholar 

  16. Kleinknecht D, Jungers P, Channard J et al. (1971) Factors influencing immediate prognosis in acute renal failure with special reference to prophylactic hemodialysis. Adv Nephrol Necker Hosp 1: 207–30

    PubMed  CAS  Google Scholar 

  17. Kresse S, Schlee H, Deuber HJ et al. (1999) Influence of renal re^placement therapy of patients with acute renal failure. Kidney Int 56: 75S–8S

    Article  Google Scholar 

  18. Guettings LG, Reynolds HN, Scalea T (1999) Outcome in post-traumatic acute renal failure when continuous therapy is applied early vs late. Intensive Care Med 25: 805–13

    Article  Google Scholar 

  19. Scuck O, Teplan V, Stollova M, Skibova J (2004) Estimation of glomerular filtration rate in obese patients with chronic renal impairment based on serum cystatin C levels. Clin Nephrol 62: 92–6

    Google Scholar 

  20. Daniel JP, Chantrel F, Offner M et al. (2004) Comparison of cystatin C, creatinine and creatinine clearance vs GFR for detection of renal failure in renal transplant patients. Ren Fail 26: 253–7

    Article  PubMed  CAS  Google Scholar 

  21. Delanaye P, Lambermont B, Chapelle JP et al. (2004) Plasma cystatin C for the estimation of glomerular filtration in intensive care units. Intensive Care Med 30: 980–3

    Article  PubMed  Google Scholar 

  22. Herget-Rosenthal S, Marggraf G, Husing J et al. (2004) Early detection of acute renal failure by serum cystatin C. Kidney Int 41: 111–8

    CAS  Google Scholar 

  23. Villa P, Jimenez M, Soriano MC et al. (2004) Serum Cystatin C concentration as a marker of acute renal dysfunction in critically ill patients. Critical Care 9 R139–43

    Article  Google Scholar 

  24. D’Amico G, Bazzi C (2003) Urinary protein and enzyme excretion as markers of tubular damage. Curr Opin Nephrol Hyperstens 12: 639–43

    Article  CAS  Google Scholar 

  25. Palevsky PM, Metnitz PG, Piccinni P et al. (2002) Selection of end-point for clinical trials of acute renal failure in critically ill patients. Curr Opin Crit Care 8: 515–8

    Article  PubMed  Google Scholar 

  26. Han WK, Bonventre JV (2004) Biologic markers for the early detection of acute kidney injury. Curr Opin Crit Care 10: 476–82

    Article  PubMed  Google Scholar 

  27. Whiting PH, Brown PA (1996) The relationship between enzymuria and kidney enzyme acivities in experimental gentamycin nephrotoxicity. Ren Fail 18: 899–909

    PubMed  CAS  Google Scholar 

  28. Fauconneau B, Favrelière S, Pariat C et al. (1997) Nephrotoxicity of gentamycin and vancomycin given alone and in combination as determined by enzymuria and cortical antibiotic levels in rats. Ren Fail 19: 15–22

    Article  PubMed  CAS  Google Scholar 

  29. Flandrois C, Flandrois JP, Couillioud D et al. (1989) Value of enzymuria during antibacterial therapy. Pathol Biol 37: 657–63

    PubMed  CAS  Google Scholar 

  30. Westhuyzen J, Cochrane AD, Tesar PJ et al. (1997) Effect of supplementation with antioxidants (a-tocopherol and ascorbic acid) on markers of tubular injury in cardiac surgery patients. Nephrology 3: 535–9

    Article  Google Scholar 

  31. Westhuyzen J, Endre ZH, Reece G et al. (2003) Measurment of tubular enzymuria facilitates early detection of acute renal impairment in the intensive care unit. Nephrol Dial Transplant 18: 543–51

    Article  PubMed  CAS  Google Scholar 

  32. Herget-Rosenthal S, Poppen D, Husing J et al. (2004) Prognostic value of tubular proteinuria and enzymuria in nonoliguric acute tubular necrosis. Clin Chem 50: 552–8

    Article  PubMed  CAS  Google Scholar 

  33. Wang T, Yang CL, Abbiati T et al. (1999) Mechanism of proximal tubule bicarbonate absorption in NEH3 null mice. Am J Physiol 277: F 298–302

    CAS  Google Scholar 

  34. Du Cheyron D, Daubin C, Poggioli J et al. (2003) Urinary measurement of Na+/H+ exchanger isoform 3 (NHE3) protein as new marker of tubular injury in critically ill patients with ARF. Am J Kidney Dis 42: 497–506

    Article  PubMed  CAS  Google Scholar 

  35. Ichimura T, Bonventre JV, Bailly V et al. (1998) Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is upregulated in renal cells after injury. J Biol Chem 13: 4135–42

    Article  Google Scholar 

  36. Han WK, Bailly V, Abichandani R et al. (2002) Kidney injury molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int 62: 237–44

    Article  PubMed  CAS  Google Scholar 

  37. Mishra J, Mori K, Ma Q et al. (2004) Amelioration of ischemic acute renal injury by neutrophil gelatinase-associated lipocalin. J Am Soc Nephrol 15: 3073–82

    Article  PubMed  Google Scholar 

  38. Mishra J, Dent C, Tarabishi R et al. (2005) Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet 365: 1231–8

    Article  PubMed  CAS  Google Scholar 

  39. Parikh CR, Jani A, Melnikov VY et al. (2004) Urinary interleukin-18 is a marker of human acute tubular necrosis. Am J Kidney Dis 43: 405–4

    Article  PubMed  CAS  Google Scholar 

  40. Parikh CR, Abraham E, Ancukiewicz M, Edelstein CL (2005) Urine IL-18 is an early diagnostic marker for acute kidney injury and predicts mortality in the intensive care unit. J Am Soc Nephrol 16: 3046–52

    Article  PubMed  CAS  Google Scholar 

  41. Muramatsu Y, Tsujie M, Kohda Y et al. (2002) Early detection of cystein rich protein 61 (CYR61, CCN1) in urine following renal ischemic reperfusion injury. Kidney Int 62: 1601–10

    Article  PubMed  CAS  Google Scholar 

  42. Bonventre JV, Weinberg JM (2003) Recent advances in the pathophysiology of ischemic acute renal failure. J Am Soc Nephrol 14: 2199–210

    Article  PubMed  Google Scholar 

  43. Zahedi K, Wang Z, Barone S et al. (2003) Expression of SSAT, a novel biomarker of tubular cell damage, increases in kidney ischemia-reperfusion injury. Am J Physiol 284: F1046–55

    CAS  Google Scholar 

  44. Hewitt SM, Dear J, Star RA (2004). Discovery of protein biomarkers for renal diseases. J Am Soc Nephrol 15: 1677–89

    Article  PubMed  Google Scholar 

  45. Lundina TA, Knubovets TL, Sedov KR et al. (1993) Variability of kidney tubular interstitial distorsions in glomerulonephritis as measured by 1H NMR urinalysis. Clin Chim Acta 214: 165–73

    Article  PubMed  CAS  Google Scholar 

  46. Hauet T, Baumert H, Gibelin H et al. (2000) Noninvasive monitoring of citrate, acetate, lactate, and renal medullary osmolyte excretion in urine as biomarkers of exposure to ischemic reperfusion injury. Cryobiology 41: 280–91

    Article  PubMed  CAS  Google Scholar 

  47. Balaban RS, Burg MN (1987) Osmotically active organic solutes in the renal inner medulla. Kidney Int 31: 562–4

    Article  PubMed  CAS  Google Scholar 

  48. Holmes H, Bonner FW, Sweatman BC et al. (1992) Nuclear magnetic resonance spectroscopy and pattern recognition analysis of the biochemical processes associated with the progression of and recovery from nephrotoxic lesions in the rat induced by mercury (II) chloride and 2-bromoethanolamine. Mol Pharmacol 42: 922–30

    PubMed  CAS  Google Scholar 

  49. Le Moyec L, Racine S, Le Toumelin P et al. (2002) Aminoglycoside and glycopeptide renal toxicity in intensive care patients studied by proton magnetic resonance spectroscopy of urine. Crit Care Med 30: 1242–5

    Article  PubMed  Google Scholar 

  50. Pozzi Mucelli R, Bertolotto M, Quaia E (1998) Imaging techniques in acute renal failure. Contrib Nephrol 132: 76–91

    Google Scholar 

  51. Grenier N. (2005) Imagerie fonctionnelle par rayons X. In Hélénon O (ed) Imagerie de l’appareil génito-urinaire. Médecine-Sciences. Flammarion p 204–208

    Google Scholar 

  52. Patlak CS, Blasberg RG, Fenstermacher JD (1983) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 3: 1–7

    PubMed  CAS  Google Scholar 

  53. Dawson D, Peters M (1993) Dynamic contrast bolus bolus computed tomography for the assessment of renal function. Invest Radiol 28: 1039–42

    Article  PubMed  CAS  Google Scholar 

  54. Dalla-Palma L, Panzetta G, Pozzi-Mucelli RS et al. (2000) Dynamic magnetic resonance imaging in the assessment of chronic medical nephropathies with impaired renal function. Eur Radiol 10: 280–6

    Article  PubMed  CAS  Google Scholar 

  55. Krestin G, Schuhmann-Giampieri G, Huastein et al. (1992) Functional dynamic MRI, pharmacokinetics and safety of Gd-DTPA in patients with impaired renal function. Eur Radiol 2: 16

    Article  Google Scholar 

  56. Dagher PC, Herget-Rosenthal S, Ruehm SG et al. (2003) Newly developed techniques to study and diagnose acute renal failure. J Am Soc Nephrol 14: 2188–98

    Article  PubMed  Google Scholar 

  57. Ponto JA, Chilton HM, Watson NE (1990) Radiopharmaceuticals for genitourinary imaging. In: Swanson DP, Chilton HM, Thrall JH (ed) 501 Pharmaceuticals in nuclear imaging, Macmillian

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag France

About this chapter

Cite this chapter

Desport, E., Robert, R. (2007). Marqueurs de souffrance rénale: Imagerie. In: Jacob, L. (eds) L’insuffisance rénale aiguë. Le point sur …. Springer, Paris. https://doi.org/10.1007/978-2-287-71152-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-2-287-71152-7_4

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-287-71151-0

  • Online ISBN: 978-2-287-71152-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics