Skip to main content

Température cérébrale: physiologie et intérêt de sa surveillance

  • Chapter
La réanimation neurochirurgicale

Part of the book series: Le point sur … ((POINT))

  • 653 Accesses

Abstrait

De nombreuses expressions populaires relient activité intellectuelle soutenue et température du cerveau. Il est effectivement aujourd’hui démontré que la température du cerveau est en grande partie dépendante de son activité métabolique, mais également que les régulations de ces deux valeurs sont complexes et fines. Le lien entre température et métabolisme est toujours interactif. D’une part le métabolisme cellulaire cérébral est l’un des principaux déterminants de la température cérébrale, et d’autre part des modifications mineures de cette température entraînent des variations significatives du métabolisme cellulaire neuronal et donc du fonctionnement cérébral. Le contrôle de la température cérébrale est ainsi essentiel pour un fonctionnement optimal du cerveau dans toutes les situations physiologiques (de l’effort physique intense au repos complet).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Bullock R, Chesnut RM, Clifton G et al. (1996) Guidelines for the management of severe head injury. Brain Trauma Foundation. Eur J Emerg Med 3: 109–27

    Article  PubMed  CAS  Google Scholar 

  2. McIntyre LA, Fergusson DA, Hebert PC et al. (2003) Prolonged therapeutic hypothermia after traumatic brain injury in adults: a systematic review. JAMA 289: 2992–9

    Article  PubMed  Google Scholar 

  3. Callaway CW, Tadler SC, Katz LM et al. (2002) Feasibility of external cranial cooling during out-of-hospital cardiac arrest. Resuscitation 52: 159–65

    Article  PubMed  Google Scholar 

  4. Corrard F (1999) [Selective brain cooling]. Arch Pediatr 6: 87–92

    Article  PubMed  CAS  Google Scholar 

  5. Baker MA (1979) La thermorégulation du cerveau chez les mammifères. Pour la Science 21: 83–92

    Google Scholar 

  6. Baker MA (1979) A brain-cooling system in mammals. Sci Am 240: 130–9

    Article  PubMed  CAS  Google Scholar 

  7. Sessler DI (2000) Perioperative heat balance. Anesthesiology 92: 578–96

    Article  PubMed  CAS  Google Scholar 

  8. Saper CB, Lu J, Chou TC, Gooley J (2005) The hypothalamic integrator for circadian rhythms. Trends Neurosci 28: 152–7

    Article  PubMed  CAS  Google Scholar 

  9. Sokoloff L (1999) Energetics of functional activation in neural tissues. Neurochem Res 24: 321–9

    Article  PubMed  CAS  Google Scholar 

  10. Abrams RM, Stolwijk JA, Hammel HT, Graichen H (1965) Brain temperature and brain blood flow in unanesthetized rats. Life Sci 4: 2399–410

    Article  PubMed  CAS  Google Scholar 

  11. Delgado JM, Hanai T (1966) Intracerebral temperatures in free-moving cats. Am J Physiol 211: 755–69

    PubMed  CAS  Google Scholar 

  12. Kiyatkin EA, Brown PL (2005) Brain and body temperature homeostasis during sodium pentobarbital anesthesia with and without body warming in rats. Physiol Behav 84: 563–70

    Article  PubMed  CAS  Google Scholar 

  13. Kiyatkin EA, Brown PL, Wise RA (2002) Brain temperature fluctuation: a reflection of functional neural activation. Eur J Neurosci 16: 164–8

    Article  PubMed  Google Scholar 

  14. Zhu M, Nehra D, Ackerman JH, Yablonskiy DA (2004) On the role of anesthesia on the body/brain differential in rats. J. Therm. Biol. 29: 599–603

    Article  PubMed  Google Scholar 

  15. Volgushev M, Vidyasagar TR, Chistiakova M, Eysel UT (2000) Synaptic transmission in the neocortex during reversible cooling. Neuroscience 98: 9–22

    Article  PubMed  CAS  Google Scholar 

  16. Rosen AD (1996) Temperature modulation of calcium channel function in GH3 cells. Am J Physiol 271: C863–8

    PubMed  CAS  Google Scholar 

  17. Rosen AD (2001) Nonlinear temperature modulation of sodium channel kinetics in GH (3) cells. Biochim Biophys Acta 1511: 391–6

    Article  PubMed  CAS  Google Scholar 

  18. Suehiro E, Fujisawa H, Ito H et al. (1999) Brain temperature modifies glutamate neurotoxicity in vivo. J Neurotrauma 16: 285–97

    Article  PubMed  CAS  Google Scholar 

  19. Dietrich WD (1992) The importance of brain temperature in cerebral injury. J Neurotrauma 9Suppl 2: S475–85

    PubMed  Google Scholar 

  20. Tremey B, Vigue B (2004) [Changes in blood gases with temperature: implications for clinical practice]. Ann Fr Anesth Reanim 23: 474–81

    Article  PubMed  CAS  Google Scholar 

  21. Ream AK, Reitz BA, Silverberg G (1982) Temperature correction of PCO2 and pH in estimating acid-base status: an example of the emperor’s new clothes ? Anesthesiology 56: 41–4

    Article  PubMed  CAS  Google Scholar 

  22. Vigue B, Ract C, Zlotine N et al. (2000) Relationship between intracranial pressure, mild hypothermia and temperature-corrected PaCO2 in patients with traumatic brain injury. Intensive Care Med 26: 722–8

    Article  PubMed  CAS  Google Scholar 

  23. Chatzipanteli K, Alonso OF, Kraydieh S, Dietrich WD (2000) Importance of posttraumatic hypothermia and hyperthermia on the inflammatory response after fluid percussion brain injury: biochemical and immunocytochemical studies. J Cereb Blood Flow Metab 20: 531–42

    Article  PubMed  CAS  Google Scholar 

  24. Sharma HS, Hoopes PJ (2003) Hyperthermia induced pathophysiology of the central nervous system. Int J Hyperthermia 19: 325–54

    Article  PubMed  CAS  Google Scholar 

  25. Dietrich WD, Alonso O, Halley M, Busto R (1996) Delayed posttraumatic brain hyperthermia worsens outcome after fluid percussion brain injury: a light and electron microscopic study in rats. Neurosurgery 38: 533–41; discussion 41

    Article  PubMed  CAS  Google Scholar 

  26. Rossi S, Zanier ER, Mauri I et al. (2001) Brain temperature, body core temperature, and intracranial pressure in acute cerebral damage. J Neurol Neurosurg Psychiatry 71: 448–54

    Article  PubMed  CAS  Google Scholar 

  27. Rumana CS, Gopinath SP, Uzura M et al. (1998) Brain temperature exceeds systemic temperature in head-injured patients. Crit Care Med 26: 562–7

    Article  PubMed  CAS  Google Scholar 

  28. Crompton MR (1971) Hypothalamic lesions following closed head injury. Brain 94: 165–72

    Article  PubMed  CAS  Google Scholar 

  29. Goodman JC, Valadka AB, Gopinath SP et al. (1999) Extracellular lactate and glucose alterations in the brain after head injury measured by microdialysis. Crit Care Med 27: 1965–73

    Article  PubMed  CAS  Google Scholar 

  30. Marion DW, Darby J, Yonas H (1991) Acute regional cerebral blood flow changes caused by severe head injuries. J Neurosurg 74: 407–14

    PubMed  CAS  Google Scholar 

  31. Goss JR, Styren SD, Miller PD et al. (1995) Hypothermia attenuates the normal increase in interleukin 1 beta RNA and nerve growth factor following traumatic brain injury in the rat. J Neurotrauma 12: 159–67

    PubMed  CAS  Google Scholar 

  32. Soukup J, Zauner A, Doppenberg EM et al. (2002) The importance of brain temperature in patients after severe head injury: relationship to intracranial pressure, cerebral perfusion pressure, cerebral blood flow, and outcome. J Neurotrauma 19: 559–71

    Article  PubMed  Google Scholar 

  33. Fountas KN, Kapsalaki EZ, Feltes CH et al. (2003) Disassociation between intracranial and systemic temperatures as an early sign of brain death. J Neurosurg Anesthesiol 15: 87–9

    Article  PubMed  CAS  Google Scholar 

  34. Otawara Y, Ogasawara K, Kubo Y et al. (2003) Brain and systemic temperature in patients with severe subarachnoid hemorrhage. Surg Neurol 60: 159–64; discussion 64

    Article  PubMed  Google Scholar 

  35. Steiner AA, Branco LG (2001) Carbon monoxide is the heme oxygenase product with a pyretic action: evidence for a cGMP signaling pathway. Am J Physiol Regul Integr Comp Physiol 280: R448–57

    PubMed  CAS  Google Scholar 

  36. Cork RC, Vaughan RW, Humphrey LS (1983) Precision and accuracy of intraoperative temperature monitoring. Anesth Analg 62: 211–4

    Article  PubMed  CAS  Google Scholar 

  37. Stone JG, Young WL, Smith CR et al. (1995) Do standard monitoring sites reflect true brain temperature when profound hypothermia is rapidly induced and reversed ? Anesthesiology 82: 344–51

    Article  PubMed  CAS  Google Scholar 

  38. Mellergard P (1995) Intracerebral temperature in neurosurgical patients: intracerebral temperature gradients and relationships to consciousness level. Surg Neurol 43: 91–5

    Article  PubMed  CAS  Google Scholar 

  39. Stone JG, Goodman RR, Baker KZ et al. (1997) Direct intraoperative measurement of human brain temperature. Neurosurgery 41: 20–4

    Article  PubMed  CAS  Google Scholar 

  40. Alessandri B, Hoelper BM, Behr R, Kempski O (2004) Accuracy and stability of temperature probes for intracranial application. J Neurosci Methods 139: 161–5

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag France

About this chapter

Cite this chapter

Geeraerts, T., Vigué, B. (2007). Température cérébrale: physiologie et intérêt de sa surveillance. In: Bruder, N., Ravussin, P., Bissonnette, B. (eds) La réanimation neurochirurgicale. Le point sur …. Springer, Paris. https://doi.org/10.1007/978-2-287-68199-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-2-287-68199-8_8

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-287-68198-1

  • Online ISBN: 978-2-287-68199-8

Publish with us

Policies and ethics