Skip to main content

Surveillance de la circulation cérébrale par Doppler transcrânien en réanimation neurochirurgicale

  • Chapter
La réanimation neurochirurgicale

Part of the book series: Le point sur … ((POINT))

  • 660 Accesses

Abstrait

C’est en 1981 que Rune Aaslid a apporté la démonstration qu’il était possible de recueillir un signal Doppler au travers de la barrière osseuse de la boîte crânienne (1). Historiquement, il était généralement considéré que les ultrasons ne pouvaient être utilisés dans cette application, les ruptures d’impédance successives dissipant l’énergie de l’onde émise. Cet obstacle théorique a été surmonté grâce à deux caractéristiques du Doppler transcrânien (DTC):

  • —l’atténuation du signal Doppler étant proportionnelle au carré de la fréquence, l’onde émise du DTC est à basse fréquence: 2 MHz;

  • —les DTC sont de forte puissance 100 mW/cm2, 90% de l’énergie émise étant dissipée sous forme de chaleur au travers des différentes interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Aaslid R, Markwalder T, Nornes H (1982) Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg 57: 769–74

    PubMed  CAS  Google Scholar 

  2. Fischer AQ, Truemper E (1993) Transcranial Doppler applications in the neonate and child, Transcranial Doppler ultrasonography. Edited by Babikian V, Wechsler LR, St Louis, Mosby pp 282–302

    Google Scholar 

  3. Bruder N, Cohen B, Pellissier D, Francois G (1998) The effect of hemodilution on cerebral blood flow velocity in anesthetized patients. Anesth Analg 86: 320–4

    Article  PubMed  CAS  Google Scholar 

  4. Cigada M, Marzorati S, Tredici S, Iapichino G (2000) Cerebral CO2 vasoreactivity evaluation by transcranial Doppler ultrasound technique: a standardized methodology. Intensive Care Med 26: 729–32

    Article  PubMed  CAS  Google Scholar 

  5. Richards HK, Czosnyka M, Whitehouse H, Pickard JD (1998) Increase in transcranial Doppler pulsatility index does not indicate the lower limit of cerebral autoregulation. Acta Neurochir Suppl 71: 229–32

    PubMed  CAS  Google Scholar 

  6. Hassler W, Steinmetz H, Pirschel J (1989) Transcranial Doppler study of intracranial circulatory arrest. J Neurosurg 71: 195–201

    PubMed  CAS  Google Scholar 

  7. Hassler W, Steinmetz H, Gawlowski J (1988) Transcranial Doppler ultrasonography in raised intracranial pressure and in intracranial circulatory arrest. J Neurosurg 68: 745–51

    PubMed  CAS  Google Scholar 

  8. Ducrocq X, Braun M, Debouverie M et al. (1998) Brain death and transcranial Doppler: experience in 130 cases of brain dead patients. J Neurol Sci 160: 41–6

    Article  PubMed  CAS  Google Scholar 

  9. Ducrocq X, Hassler W, Moritake K et al. (1998) Consensus opinion on diagnosis of cerebral circulatory arrest using Doppler-sonography: Task Force Group on cerebral death of the Neurosonology Research Group of the World Federation of Neurology. J Neurol Sci 159: 145–50

    Article  PubMed  CAS  Google Scholar 

  10. Ducrocq X, Pincemaille B, Braun M et al. (1992) Intérêt du Doppler transcrânien chez les patients suspects de mort cérébrale. Ann Fr Anesth Reanim 11: 415–23

    Article  PubMed  CAS  Google Scholar 

  11. Chiu NC, Shen EY, Lee BS (1994) Reversal of diastolic cerebral blood flow in infants without brain death. Pediatr Neurol 11: 337–40

    Article  PubMed  CAS  Google Scholar 

  12. de Freitas GR, Lima MA, Andre C (2003) Complex spinal reflexes during transcranial Doppler ultrasound examination for the confirmation of brain death. Acta Neurol Scand 108: 170–3

    Article  PubMed  Google Scholar 

  13. Dosemeci L, Dora B, Yilmaz M et al. (2004) Utility of transcranial doppler ultrasonography for confirmatory diagnosis of brain death: two sides of the coin. Transplantation 77: 71–5

    Article  PubMed  Google Scholar 

  14. (1995) Practice parameters for determining brain death in adults (summary statement). The Quality Standards Subcommittee of the American Academy of Neurology. Neurology 45: 1012–4

    Google Scholar 

  15. Wijdicks EF (1995) Determining brain death in adults. Neurology 45: 1003–11

    PubMed  CAS  Google Scholar 

  16. Ter Minassian A, Proust F, Berre J et al. (2005) Facteurs de gravité de l’hémorragie sousarachnoïdienne: hypertension intracrânienne, hydrocéphalie. Ann Fr Anesth Reanim 24: 723–8

    PubMed  Google Scholar 

  17. Bellner J, Romner B, Reinstrup P et al. (2004) Transcranial Doppler sonography pulsatility index (PI) reflects intracranial pressure (ICP). Surg Neurol 62: 45–51; discussion 51

    Article  PubMed  Google Scholar 

  18. Manno E, Gress D, Schwamm L et al. (1998) Effects of induced hypertension on transcranial Doppler ultrasound velocities in patients after subarachnoid hemorrhage. Stroke 29: 422–8

    PubMed  CAS  Google Scholar 

  19. Giller CA, Purdy P, Giller A et al. (1995) Elevated transcranial Doppler ultrasound velocities following therapeutic arterial dilation. Stroke 26: 123–7

    PubMed  CAS  Google Scholar 

  20. Lindegaard KF, Nornes H, Bakke SJ et al. (1988) Cerebral vasospasm after subarachnoid haemorrhage investigated by means of transcranial Doppler ultrasound. Acta Neurochir Suppl (Wien) 42: 81–4

    CAS  Google Scholar 

  21. Lindegaard K (1999) The role of transcranial Doppler in the management of patients with subarachnoid haemorrhage-a review. Acta Neurochir Suppl (Wien) 72: 59–71

    CAS  Google Scholar 

  22. Berre J, Gabrillargues J, Audibert G et al. (2005) Hemorragies meningees graves: prevention, diagnostic et traitement du vasospasme. Ann Fr Anesth Reanim 24: 761–74

    PubMed  CAS  Google Scholar 

  23. Grosset D, Straiton J, du TM, Bullock R (1992) Prediction of symptomatic vasospasm after subarachnoid hemorrhage by rapidly increasing transcranial Doppler velocity and cerebral blood flow changes. Stroke 23: 674–9

    PubMed  CAS  Google Scholar 

  24. Grosset D, Straiton J, McDonald I et al. (1993) Use of transcranial Doppler sonography to predict development of a delayed ischemic deficit after subarachnoid hemorrhage. J Neurosurg 78: 183–7

    PubMed  CAS  Google Scholar 

  25. Lam J, Smielewski P, Czosnyka M et al. (2000) Predicting delayed ischemic deficits after aneurysmal subarachnoid hemorrhage using a transient hyperemic response test of cerebral autoregulation. Neurosurgery 47: 819–25; discussions 25–6

    Article  PubMed  CAS  Google Scholar 

  26. Ratsep T, Asser T (2001) Cerebral hemodynamic impairment after aneurysmal subarachnoid hemorrhage as evaluated using transcranial doppler ultrasonography: relationship to delayed cerebral ischemia and clinical outcome. J Neurosurg 95: 393–401

    PubMed  CAS  Google Scholar 

  27. Tibble RK, Girling KJ, Mahajan RP (2001) A comparison of the transient hyperemic response test and the static autoregulation test to assess graded impairment in cerebral autoregulation during propofol, desflurane, and nitrous oxide anesthesia. Anesth Analg 93: 171–6

    Article  PubMed  CAS  Google Scholar 

  28. Giller CA (1991) A bedside test for cerebral autoregulation using transcranial Doppler ultrasound. Acta Neurochir (Wien) 108: 7–14

    Article  CAS  Google Scholar 

  29. Martin N, Doberstein C, Zane C et al. (1992) Posttraumatic cerebral arterial spasm: transcranial Doppler ultrasound, cerebral blood flow, and angiographic findings. J Neurosurg 77: 575–83

    PubMed  CAS  Google Scholar 

  30. Lee J, Martin N, Alsina G et al. (1997) Hemodynamically significant cerebral vasospasm and outcome after head injury: a prospective study. J Neurosurg 87: 221–33

    Article  PubMed  CAS  Google Scholar 

  31. Oertel M, Boscardin WJ, Obrist WD et al. (2005) Posttraumatic vasospasm: the epidemiology, severity, and time course of an underestimated phenomenon: a prospective study performed in 299 patients. J Neurosurg 103: 812–24

    PubMed  Google Scholar 

  32. Terminassian A, Bonnet F, Guerrini P et al. (1992) Lésion carotidienne traumatique: intérêt d’un dépistage Doppler chez les traumatisés craniofaciaux. Ann Fr Anesth Reanim 11: 598–600

    Article  PubMed  CAS  Google Scholar 

  33. Schmidt E, Czosnyka M, Gooskens I et al. (2001) Preliminary experience of the estimation of cerebral perfusion pressure using transcranial Doppler ultrasonography. J Neurol Neurosurg Psychiatry 70: 198–204

    Article  PubMed  CAS  Google Scholar 

  34. Newell D, Aaslid R, Stooss R et al. (1997) Evaluation of hemodynamic responses in head injury patients with transcranial Doppler monitoring. Acta Neurochir (Wien) 139: 804–17

    Article  CAS  Google Scholar 

  35. Lang EW, Lagopoulos J, Griffith J et al. (2003) Noninvasive cerebrovascular autoregulation assessment in traumatic brain injury: validation and utility. J Neurotrauma 20: 69–75

    Article  PubMed  Google Scholar 

  36. Lennard N, Smith JL, Hayes P et al. (1999) Transcranial Doppler directed dextran therapy in the prevention of carotid thrombosis: three hour monitoring is as effective as six hours. Eur J Vasc Endovasc Surg 17: 301–5

    Article  PubMed  CAS  Google Scholar 

  37. Czosnyka M, Smielewski P, Czosnyka Z et al. (2003) Continuous assessment of cerebral autoregulation: clinical and laboratory experience. Acta Neurochir Suppl 86: 581–5

    PubMed  CAS  Google Scholar 

  38. Czosnyka M, Smielewski P, Kirkpatrick P et al. (1998) Continuous monitoring of cerebrovascular pressure-reactivity in head injury. Acta Neurochir Suppl (Wien) 71: 74–7

    CAS  Google Scholar 

  39. Tiecks FP, Lam AM, Aaslid R, Newell DW (1995) Comparison of static and dynamic cerebral autoregulation measurements. Stroke 26: 1014–9

    PubMed  CAS  Google Scholar 

  40. Uzuner N, Horner S, Pichler G et al. (2004) Right-to-left shunt assessed by contrast transcranial Doppler sonography: new insights. J Ultrasound Med 23: 1475–82

    PubMed  Google Scholar 

  41. Angeli S, Del Sette M, Beelke M et al. (2001) Transcranial Doppler in the diagnosis of cardiac patent foramen ovale. Neurol Sci 22: 353–6

    Article  PubMed  CAS  Google Scholar 

  42. Ursino M, Ter Minassian A, Lodi CA, Beydon L (2000) Cerebral hemodynamics during arterial and CO(2) pressure changes: in vivo prediction by a mathematical model. Am J Physiol Heart Circ Physiol 279: H2439–55

    PubMed  CAS  Google Scholar 

  43. Lodi CA, Ter Minassian A, Beydon L, Ursino M (1998) Modeling cerebral autoregulation and CO2 reactivity in patients with severe head injury. Am J Physiol 274 H1729–41

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag France

About this chapter

Cite this chapter

Ter Minassian, A. (2007). Surveillance de la circulation cérébrale par Doppler transcrânien en réanimation neurochirurgicale. In: Bruder, N., Ravussin, P., Bissonnette, B. (eds) La réanimation neurochirurgicale. Le point sur …. Springer, Paris. https://doi.org/10.1007/978-2-287-68199-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-2-287-68199-8_6

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-287-68198-1

  • Online ISBN: 978-2-287-68199-8

Publish with us

Policies and ethics