Skip to main content

Protection cérébrale: données expérimentales

  • Chapter
La réanimation neurochirurgicale

Part of the book series: Le point sur … ((POINT))

  • 645 Accesses

Abstrait

Le concept de protection cérébrale fait référence à toute mesure pharmacologique ou non pharmacologique, qui, instaurée avant ou concomitamment à une agression hypoxique ou ischémique, entraîne une amélioration significative de la fonction neurologique. La protection cérébrale reste encore aujourd’hui un formidable défit. En effet, en ce début du troisième millénaire, les médecins confrontés aux patients à risque d’hypoxie ou d’ischémie s’interrogent toujours pour savoir dans quelle mesure cet objectif doit être considéré comme un rêve impossible ou une réalité naissante. Deux raisons essentielles sont à l’origine de cette étonnante perplexité. La première réside dans la connaissance de cette pathologie, qui est un préalable indispensable à l’instauration d’une thérapeutique efficace, préventive et curative. Or, l’ischémie cérébrale déclenche une cascade extrêmement complexe de réactions physiopathologiques et entraîne une multitude de réactions biochimiques, inflammatoires et géniques dont la finalité reste imparfaitement comprise. La seconde raison est liée au fait qu’une thérapeutique bénéfique au plan expérimental ne peut être transposée de manière systématique à une situation clinique. En d’autres termes, en dépit des avancées indéniables de la recherche fondamentale et de l’expérimentation animale, les mesures de protection cérébrale qui ont fait leur preuve en clinique humaine restent encore à ce jour très limitées.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Szczudlik A, Slowik A, Turaj W et al. (2001) Transient hyperglycemia in ischemic stroke patients. J Neurol Sci 189: 105–11

    Article  PubMed  CAS  Google Scholar 

  2. Van den BG, Wouters P, Weekers F et al. (2001) Intensive insulin therapy in the critically ill patients. N Engl J Med 345: 1359–67

    Article  Google Scholar 

  3. Cronberg T, Rytter A, Asztely F et al. (2004) Glucose but not lactate in combination with acidosis aggravates ischemic neuronal death in vitro. Stroke 35: 753–7

    Article  PubMed  CAS  Google Scholar 

  4. Payne RS, Tseng MT, Schurr A (2003) The glucose paradox of cerebral ischemia: evidence for corticosterone involvement. Brain Res 971: 9–17

    Article  PubMed  CAS  Google Scholar 

  5. Chesnut RM, Marshall SB, Piek J et al. (1993) Early and late systemic hypotension as a frequent and fundamental source of cerebral ischemia following severe brain injury in the Traumatic Coma Data Bank. Acta Neurochir Suppl (Wien) 59: 121–5

    CAS  Google Scholar 

  6. Chang HS, Hongo K, Nakagawa H (2000) Adverse effects of limited hypotensive anesthesia on the outcome of patients with subarachnoid hemorrhage. J Neurosurg 92: 971–5

    PubMed  CAS  Google Scholar 

  7. Amorim P, Cottrell JE, Kass IS (1999) Effect of small changes in temperature on CA1 pyramidal cells from rat hippocampal slices during hypoxia: implications about the mechanism of hypothermic protection against neuronal damage. Brain Res 844: 143–9

    Article  PubMed  CAS  Google Scholar 

  8. Wang J, Chambers G, Cottrell JE, Kass IS (2000) Differential fall in ATP accounts for effects of temperature on hypoxic damage in rat hippocampal slices. J Neurophysiol 83: 3462–72

    PubMed  CAS  Google Scholar 

  9. Zierer A, Aybek T, Risteski P, Dogan S, Wimmer-Greinecker G, Moritz A (2005) Moderate hypothermia (30 degrees C) for surgery of acute type a aortic dissection. Thorac Cardiovasc Surg 53: 74–9

    Article  PubMed  CAS  Google Scholar 

  10. Todd MM, Hindman BJ, Clarke WR, Torner JC (2005) Mild intraoperative hypothermia during surgery for intracranial aneurysm. N Engl J Med 352: 135–45

    Article  PubMed  CAS  Google Scholar 

  11. Knoll T, Wimmer ML, Gumpinger F, Haberl RL (2002) The low normothermia concept—maintaining a core body temperature between 36 and 37 degrees C in acute stroke unit patients. J Neurosurg Anesthesiol 14: 304–8

    Article  PubMed  Google Scholar 

  12. Nakashima K, Todd MM, Warner DS (1995) The relation between cerebral metabolic rate and ischemic depolarization. A comparison of the effects of hypothermia, pentobarbital, and isoflurane. Anesthesiology 82: 1199–208

    Article  PubMed  CAS  Google Scholar 

  13. Schmid-Elsaesser R, Schroder M, Zausinger S et al. (1999) EEG burst suppression is not necessary for maximum barbiturate protection in transient focal cerebral ischemia in the rat. J Neurol Sci 162: 14–9

    Article  PubMed  CAS  Google Scholar 

  14. Rosenthal RE, Williams R, Bogaert YE et al. (1992) Prevention of postischemic canine neurological injury through potentiation of brain energy metabolism by acetyl-L-carnitine. Stroke 23: 1312–7

    PubMed  CAS  Google Scholar 

  15. Vornov JJ, Tasker RC, Coyle JT (1994) Delayed protection by MK-801 and tetrodotoxin in a rat organotypic hippocampal culture model of ischemia. Stroke 25: 457–64

    PubMed  CAS  Google Scholar 

  16. Fried E, Amorim P, Chambers G et al. (1995) The importance of sodium for anoxic transmission damage in rat hippocampal slices: mechanisms of protection by lidocaine. J Physiol 489(Pt 2): 557–65

    PubMed  CAS  Google Scholar 

  17. Lei B, Cottrell JE, Kass IS (2001) Neuroprotective effect of low-dose lidocaine in a rat model of transient focal cerebral ischemia. Anesthesiology 95: 445–51

    Article  PubMed  CAS  Google Scholar 

  18. Mitchell SJ, Pellett O, Gorman DF (1999) Cerebral protection by lidocaine during cardiac operations. Ann Thorac Surg 67: 1117–24

    Article  PubMed  CAS  Google Scholar 

  19. Wang D, Wu X, Li J et al. (2002) The effect of lidocaine on early postoperative cognitive dysfunction after coronary artery bypass surgery. Anesth Analg 95: 1134–41, table of contents

    Article  PubMed  CAS  Google Scholar 

  20. Mathew J et al. (2004) Lidocaine does not prevent cognitive dysfunction after cardiac surgery. Anesth Analg 98: SCA 13

    Google Scholar 

  21. Sitar SM, Hanifi-Moghaddam P, Gelb A, Cechetto DF, Siushansian R, Wilson JX (1999) Propofol prevents peroxide-induced inhibition of glutamate transport in cultured astrocytes. Anesthesiology 90: 1446–53

    Article  PubMed  CAS  Google Scholar 

  22. Velly LJ, Guillet BA, Masmejean FM et al. (2003) Neuroprotective effects of propofol in a model of ischemic cortical cell cultures: role of glutamate and its transporters. Anesthesiology 99: 368–75

    Article  PubMed  CAS  Google Scholar 

  23. Bosel J, Gandor F, Harms C et al. (2005) Neuroprotective effects of atorvastatin against glutamate-induced excitotoxicity in primary cortical neurones. J Neurochem 92: 1386–98

    Article  PubMed  CAS  Google Scholar 

  24. Doppenberg E, Choi S, Bullock R (2004) Clinical Trials in Traumatic Brain Injury: Lessons for the Future. J Neurosurg Anesthesiol 16: 87–94

    Article  PubMed  Google Scholar 

  25. Proescholdt M, Heimann A, Kempski O (2001) Neuroprotection of S(+) ketamine isomer in global forebrain ischemia. Brain Res 904: 245–51

    Article  PubMed  CAS  Google Scholar 

  26. Marinov MB, Harbaugh KS, Hoopes PJ et al. (1996) Neuroprotective effects of preischemia intraarterial magnesium sulfate in reversible focal cerebral ischemia. J Neurosurg 85: 117–24

    PubMed  CAS  Google Scholar 

  27. Feldman Z, Gurevitch B, Artru AA et al. (1996) Effect of magnesium given 1 hour after head trauma on brain edema and neurological outcome. J Neurosurg 85: 131–7

    Article  PubMed  CAS  Google Scholar 

  28. Saatman KE, Bareyre FM, Grady MS, McIntosh TK (2001) Acute cytoskeletal alterations and cell death induced by experimental brain injury are attenuated by magnesium treatment and exacerbated by magnesium deficiency. J Neuropathol Exp Neurol 60: 183–94

    PubMed  CAS  Google Scholar 

  29. Muir KW (2002) Magnesium in stroke treatment. Postgrad Med J 78: 641–5

    Article  PubMed  CAS  Google Scholar 

  30. Westermaier T, Zausinger S, Baethmann A, Schmid-Elsaesser R (2005) Dose finding study of intravenous magnesium sulphate in transient focal cerebral ischemia in rats. Acta Neurochir (Wien) 147: 525–32

    Article  CAS  Google Scholar 

  31. Zhu HD, Martin R, Meloni B et al. (2004) Magnesium sulfate fails to reduce infarct volume following transient focal cerebral ischemia in rats. Neurosci Res 49: 347–53

    Article  PubMed  CAS  Google Scholar 

  32. Muir KW (2001) Magnesium for neuroprotection in ischaemic stroke: rationale for use and evidence of effectiveness. CNS Drugs 15: 921–30

    Article  PubMed  CAS  Google Scholar 

  33. Muir KW, Lees KR, Ford I, Davis S (2004) Magnesium for acute stroke (Intravenous Magnesium Efficacy in Stroke trial): randomised controlled trial. Lancet 363: 439–45

    Article  PubMed  CAS  Google Scholar 

  34. Wilhelm S, Ma D, Maze M, Franks NP (2002) Effects of xenon on in vitro and in vivo models of neuronal injury. Anesthesiology 96: 1485–91

    Article  PubMed  CAS  Google Scholar 

  35. Homi HM, Yokoo N, Ma D et al. (2003) The neuroprotective effect of xenon administration during transient middle cerebral artery occlusion in mice. Anesthesiology 99: 876–81

    Article  PubMed  CAS  Google Scholar 

  36. Schmidt M, Marx T, Gloggl E et al. (2005) Xenon Attenuates Cerebral Damage after Ischemia in Pigs. Anesthesiology 102: 929–36

    Article  PubMed  CAS  Google Scholar 

  37. Engelhard K, Werner C, Reeker W et al. (1999) Desflurane and isoflurane improve neurological outcome after incomplete cerebral ischaemia in rats. Br J Anaesth 83: 415–21

    PubMed  CAS  Google Scholar 

  38. Do SH, Kamatchi GL, Washington JM, Zuo Z (2002) Effects of volatile anesthetics on glutamate transporter, excitatory amino acid transporter type 3: the role of protein kinase C. Anesthesiology 96: 1492–7

    Article  PubMed  CAS  Google Scholar 

  39. Costa C, Leone G, Saulle E et al. (2004) Coactivation of GABA(A) and GABA(B) receptor results in neuroprotection during in vitro ischemia. Stroke 35: 596–600

    Article  PubMed  CAS  Google Scholar 

  40. Bickler PE, Warner DS, Stratmann G, Schuyler JA (2003) Gamma-Aminobutyric acid-A receptors contribute to isoflurane neuroprotection in organotypic hippocampal cultures. Anesth Analg 97: 564–71, table of contents

    Article  PubMed  CAS  Google Scholar 

  41. Colbourne F, Li H, Buchan AM, Clemens JA (1999) Continuing postischemic neuronal death in CA1: influence of ischemia duration and cytoprotective doses of NBQX and SNX-111 in rats. Stroke 30: 662–8

    PubMed  CAS  Google Scholar 

  42. Martinez-Sanchez M, Striggow F, Schroder UH et al. (2004) Na(+) and Ca(2+) homeostasis pathways, cell death and protection after oxygen-glucose-deprivation in organotypic hippocampal slice cultures. Neuroscience 128: 729–40

    Article  PubMed  CAS  Google Scholar 

  43. Feigin VL, Rinkel GJ, Algra A et al. (1998) Calcium antagonists in patients with aneurysmal subarachnoid hemorrhage: a systematic review. Neurology 50: 876–83

    PubMed  CAS  Google Scholar 

  44. Horn J, de Haan RJ, Vermeulen M, Limburg M (2001) Very Early Nimodipine Use in Stroke (VENUS): a randomized, double-blind, placebo-controlled trial. Stroke 32: 461–5

    Article  PubMed  CAS  Google Scholar 

  45. Yunoki M, Kawauchi M, Ukita N et al. (2003) Effects of lecithinized superoxide dismutase on neuronal cell loss in CA3 hippocampus after traumatic brain injury in rats. Surg Neurol 59: 156–60

    Article  PubMed  Google Scholar 

  46. Kofler J, Hurn PD, Traystman RJ (2005) SOD1 overexpression and female sex exhibit region-specific neuroprotection after global cerebral ischemia due to cardiac arrest. J Cereb Blood Flow Metab 25: 1130–7

    Article  PubMed  CAS  Google Scholar 

  47. Korenkov AI, Pahnke J, Frei K et al. (2000) Treatment with nimodipine or mannitol reduces programmed cell death and infarct size following focal cerebral ischemia. Neurosurg Rev 23: 145–50

    Article  PubMed  CAS  Google Scholar 

  48. Lanzino G, Kassell NF, Dorsch NW et al. (1999) Double-blind, randomized, vehicle-controlled study of high-dose tirilazad mesylate in women with aneurysmal subarachnoid hemorrhage. Part I. A cooperative study in Europe, Australia, New Zealand, and South Africa. J Neurosurg 90: 1011–7

    PubMed  CAS  Google Scholar 

  49. Hartung J, Cottrell JE (2000) Tirilazad and subarachnoid hemorrhage. J Neurosurg 92: 508

    PubMed  CAS  Google Scholar 

  50. Bath PM, Iddenden R, Bath FJ, Orgogozo JM (2001) Tirilazad for acute ischaemic stroke. Cochrane Database Syst Rev CD002087

    Google Scholar 

  51. Thiry JC, Hans P, Deby-Dupont G et al. (2004) Propofol scavenges reactive oxygen species and inhibits the protein nitration induced by activated polymorphonuclear neutrophils. Eur J Pharmacol 499: 29–33

    Article  PubMed  CAS  Google Scholar 

  52. Chang H, Tsai SY, Chang Y et al. (2002) Therapeutic concentrations of propofol protects mouse macrophages from nitric oxide-induced cell death and apoptosis. Can J Anaesth 49: 477–80

    PubMed  Google Scholar 

  53. Engelhard K, Werner C, Eberspacher E et al. (2004) Influence of propofol on neuronal damage and apoptotic factors after incomplete cerebral ischemia and reperfusion in rats: a long-term observation. Anesthesiology 101: 912–7

    Article  PubMed  CAS  Google Scholar 

  54. Bayona NA, Gelb AW, Jiang Z et al. (2004) Propofol neuroprotection in cerebral ischemia and its effects on low-molecular-weight antioxidants and skilled motor tasks. Anesthesiology 100: 1151–9

    Article  PubMed  CAS  Google Scholar 

  55. Perez E, Liu R, Yang SH et al. (2005) Neuroprotective effects of an estratriene analog are estrogen receptor independent in vitro and in vivo. Brain Res 1038: 216–22

    Article  PubMed  CAS  Google Scholar 

  56. Li FC, Chan JY, Chan SH, Chang AY (2005) Heat Shock Protein 70 (HSP70), but not HSP90, in the Rostral Ventrolateral Medulla Confers Neuroprotection Against Fatal Endotoxemia Via Augmentation of Nitric Oxide Synthase I (NOS I)/Protein Kinase G Signaling Pathway and Inhibition of NOS II/Peroxynitrite Cascade. Mol Pharmacol 68: 179–92

    PubMed  CAS  Google Scholar 

  57. Acquaviva R, Campisi A, Murabito P et al. (2004) Propofol attenuates peroxynitrite-mediated DNA damage and apoptosis in cultured astrocytes: an alternative protective mechanism. Anesthesiology 101: 1363–71

    Article  PubMed  CAS  Google Scholar 

  58. Hu B, Liu C, Zivin JA (1999) Reduction of intracerebral hemorrhaging in a rabbit embolic stroke model. Neurology 53: 2140–5

    PubMed  CAS  Google Scholar 

  59. Yardin C, Terro F, Lesort M et al. (1998) FK506 antagonizes apoptosis and c-jun protein expression in neuronal cultures. Neuroreport 9: 2077–80

    Article  PubMed  CAS  Google Scholar 

  60. Lei B, Popp S, Capuano-Waters C et al. (2002) Effects of delayed administration of low-dose lidocaine on transient focal cerebral ischemia in rats. Anesthesiology 97: 1534–40

    Article  PubMed  CAS  Google Scholar 

  61. Raley-Susman KM, Kass IS, Cottrell JE et al. (2001) Sodium influx blockade and hypoxic damage to CA1 pyramidal neurons in rat hippocampal slices. J Neurophysiol 86: 2715–26

    PubMed  CAS  Google Scholar 

  62. Lei B, Popp S, Capuano-Waters C et al. (2004) Lidocaine attenuates apoptosis in the ischemic penumbra and reduces infarct size after transient focal cerebral ischemia in rats. Neuroscience 125: 691–701

    Article  PubMed  CAS  Google Scholar 

  63. Cao G, Pei W, Ge H et al. (2002) In Vivo Delivery of a Bcl-xL Fusion Protein Containing the TAT Protein Transduction Domain Protects against Ischemic Brain Injury and Neuronal Apoptosis. J Neurosci 22: 5423–31

    PubMed  CAS  Google Scholar 

  64. Dietz GP, Kilic E, Bahr M (2002) Inhibition of neuronal apoptosis in vitro and in vivo using TAT-mediated protein transduction. Mol Cell Neurosci 21: 29–37

    Article  PubMed  CAS  Google Scholar 

  65. Cao YJ, Shibata T, Rainov NG (2002) Liposome-mediated transfer of the bcl-2 gene results in neuroprotection after in vivo transient focal cerebral ischemia in an animal model. Gene Ther 9: 415–9

    Article  PubMed  CAS  Google Scholar 

  66. Zhang C, Siman R, Xu YA et al. (2002) Comparison of calpain and caspase activities in the adult rat brain after transient forebrain ischemia. Neurobiol Dis 10: 289–05

    Article  PubMed  CAS  Google Scholar 

  67. Engelhard K, Werner C, Eberspacher E et al. (2003) The effect of the alpha 2-agonist dexmedetomidine and the N-methyl-D-aspartate antagonist S(+)-ketamine on the expression of apoptosis-regulating proteins after incomplete cerebral ischemia and reperfusion in rats. Anesth Analg 96: 524–31, table of contents

    Article  PubMed  CAS  Google Scholar 

  68. Vogel P, Putten H, Popp E et al. (2003) Improved resuscitation after cardiac arrest in rats expressing the baculovirus caspase inhibitor protein p35 in central neurons. Anesthesiology 99: 112–21

    Article  PubMed  CAS  Google Scholar 

  69. Kitagawa K, Matsumoto M, Tagaya M et al. (1990) ‘Ischemic tolerance’ phenomenon found in the brain. Brain Res 528: 21–4

    Article  PubMed  CAS  Google Scholar 

  70. Nishio S, Yunoki M, Chen ZF et al. (2000) Ischemic tolerance in the rat neocortex following hypothermic preconditioning. J Neurosurg 93: 845–51

    PubMed  CAS  Google Scholar 

  71. Xiong L, Zhu Z, Dong H et al. (2000) Hyperbaric oxygen preconditioning induces neuroprotection against ischemia in transient not permanent middle cerebral artery occlusion rat model. Chin Med J (Engl) 113: 836–9

    CAS  Google Scholar 

  72. Lu A, Ran RQ, Clark J et al. (2002) 17-beta-estradiol induces heat shock proteins in brain arteries and potentiates ischemic heat shock protein induction in glia and neurons. J Cereb Blood Flow Metab 22: 183–95

    Article  PubMed  CAS  Google Scholar 

  73. Ruscher K, Freyer D, Karsch M et al. (2002) Erythropoietin is a paracrine mediator of ischemic tolerance in the brain: evidence from an in vitro model. J Neurosci 22: 10291–301

    PubMed  CAS  Google Scholar 

  74. Sola A, Rogido M, Lee BH et al. (2005) Erythropoietin after focal cerebral ischemia activates the Janus kinase-signal transducer and activator of transcription signaling pathway and improves brain injury in postnatal day 7 rats. Pediatr Res 57: 481–7

    Article  PubMed  CAS  Google Scholar 

  75. Ehrenreich H, Hasselblatt M, Dembowski C et al. (2002) Erythropoietin therapy for acute stroke is both safe and beneficial. Mol Med 8: 495–505

    PubMed  CAS  Google Scholar 

  76. Riepe MW, Esclaire F, Kasischke K et al. (1997) Increased hypoxic tolerance by chemical inhibition of oxidative phosphorylation: “chemical preconditioning”. J Cereb Blood Flow Metab 17: 257–64

    Article  PubMed  CAS  Google Scholar 

  77. Huber R, Kasischke K, Ludolph AC, Riepe MW (1999) Increase of cellular hypoxic tolerance by erythromycin and other antibiotics. Neuroreport 10: 1543–6

    Article  PubMed  CAS  Google Scholar 

  78. Riepe MW, Kasischke K, Raupach A (1997) Acetylsalicylic acid increases tolerance against hypoxic and chemical hypoxia. Stroke 28: 2006–11

    PubMed  CAS  Google Scholar 

  79. Bhardwaj A, Castro III AF, Alkayed NJ et al. (2001) Anesthetic choice of halothane versus propofol: impact on experimental perioperative stroke. Stroke 32: 1920–5

    PubMed  CAS  Google Scholar 

  80. Wise-Faberowski L, Raizada MK, Sumners C (2001) Oxygen and glucose deprivation-induced neuronal apoptosis is attenuated by halothane and isoflurane. Anesth Analg 93: 1281–7

    Article  PubMed  CAS  Google Scholar 

  81. Xiong L, Zheng Y, Wu M et al. (2003) Preconditioning with isoflurane produces dose-dependent neuroprotection via activation of adenosine triphosphate-regulated potassium channels after focal cerebral ischemia in rats. Anesth Analg 96: 233–7

    Article  PubMed  CAS  Google Scholar 

  82. Lim YJ, Zheng S, Zuo Z (2004) Morphine preconditions Purkinje cells against cell death under in vitro simulated ischemia-reperfusion conditions. Anesthesiology 100: 562–8

    Article  PubMed  CAS  Google Scholar 

  83. Zhang Y, Irwin MG, Wong TM (2004) Remifentanil preconditioning protects against ischemic injury in the intact rat heart. Anesthesiology 101: 918–23

    Article  PubMed  CAS  Google Scholar 

  84. Navapurkar VU, Skepper JN, Jones JG, Menon DK (1998) Propofol preserves the viability of isolated rat hepatocyte suspensions under an oxidant stress. Anesth Analg 87: 1152–7

    Article  PubMed  CAS  Google Scholar 

  85. Zaugg M, Lucchinetti E, Uecker M et al. (2003) Anaesthetics and cardiac preconditioning. Part I. Signalling and cytoprotective mechanisms. Br J Anaesth 91: 551–65

    Article  PubMed  CAS  Google Scholar 

  86. Bernaudin M, Tang Y, Reilly M et al. (2002) Brain genomic response following hypoxia and re-oxygenation in the neonatal rat. Identification of genes that might contribute to hypoxia-induced ischemic tolerance. J Biol Chem 277: 39728–38

    Article  PubMed  CAS  Google Scholar 

  87. Hoehn B, Ringer TM, Xu L et al. (2001) Overexpression of HSP72 after induction of experimental stroke protects neurons from ischemic damage. J Cereb Blood Flow Metab 21: 1303–9

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag France

About this chapter

Cite this chapter

Hans, P., Franssen, C., Bonhomme, V. (2007). Protection cérébrale: données expérimentales. In: Bruder, N., Ravussin, P., Bissonnette, B. (eds) La réanimation neurochirurgicale. Le point sur …. Springer, Paris. https://doi.org/10.1007/978-2-287-68199-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-2-287-68199-8_3

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-287-68198-1

  • Online ISBN: 978-2-287-68199-8

Publish with us

Policies and ethics