Skip to main content

Apport de l’imagerie neurologique dans la prise en charge du patient traumatisé crânien grave

  • Chapter
La réanimation neurochirurgicale

Part of the book series: Le point sur … ((POINT))

  • 646 Accesses

Abstrait

La tomodensitométrie X ou scanographie est une méthode de diagnostic radiologique tomographique permettant d’obtenir des coupes transversales reconstruites à partir de la mesure du coefficient d’atténuation du faisceau de rayons X au cours de la traversée d’un segment du corps. Le coefficient d’atténuation est exprimé en unités arbitraires: unités Hounsfield (UH). Par convention, le coefficient d’atténuation de l’eau est 0 UH et celui de l’air — 1 000 UH. Le coefficient d’atténuation des composants du contenu de la boîte crânienne est compris entre 12 UH (liquide céphalo-rachidien) et 60 UH (sang) pour une valeur moyenne de 33,5 UH chez le sujet sain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Teasdale E, Hadley DM (1997) Imaging the injury, Head injury. Reilly P, Bullock R (eds), Chapman and Hall medical, London, pp 168–207

    Google Scholar 

  2. Lobato RD, Sarabia R, Rivas JJ et al. (1986) Normal computerized tomography scans in severe head injury. Prognostic and clinical management implications. J Neurosurg 65: 784–9

    PubMed  CAS  Google Scholar 

  3. Arfanakis K, Haughton VM, Carew JD et al. (2002) Diffusion tensor MR imaging in diffuse axonal injury. AJNR Am J Neuroradiol 23: 794–802

    PubMed  Google Scholar 

  4. Wardlaw JM, Easton VJ, Statham P (2002) Which CT features help predict outcome after head injury? J Neurol Neurosurg Psychiatry 72: 188–92; discussion 51

    Article  PubMed  CAS  Google Scholar 

  5. Lang DA, Hadley DM, Teasdale GM et al. (1990) Gadolinium-DTPA enhanced magnetic resonance imaging in human head injury. Acta Neurochir Suppl (Wien) 51: 293–5

    CAS  Google Scholar 

  6. Kushi H, Katayama Y, Shibuya T et al. (1994) Gadolinium DTPA-enhanced magnetic resonance imaging of cerebral contusions. Acta Neurochir Suppl (Wien) 60: 472–4

    CAS  Google Scholar 

  7. Lescot T, Degos V, Zouaoui A et al. (2006) Opposed effects of hypertonic saline on contusion and noncontused brain tissue in patients with severe traumatic brain injury. Crit Care Med 34: 3029–33

    PubMed  CAS  Google Scholar 

  8. Yanagawa Y, Tsushima Y, Tokumaru A et al. (2000) A quantitative analysis of head injury using T2*-weighted gradient-echo imaging. J Trauma 49: 272–7

    PubMed  CAS  Google Scholar 

  9. Paterakis K, Karantanas AH, Komnos A, Volikas Z (2000) Outcome of patients with diffuse axonal injury: the significance and prognostic value of MRI in the acute phase. J Trauma 49: 1071–5

    PubMed  CAS  Google Scholar 

  10. Liu AY, Maldjian JA, Bagley LJ et al. (1999) Traumatic brain injury: diffusion-weighted MR imaging findings. AJNR Am J Neuroradiol 20: 1636–41

    PubMed  CAS  Google Scholar 

  11. Smith DH, Cecil KM, Meaney DF et al. (1998) Magnetic resonance spectroscopy of diffuse brain trauma in the pig. J Neurotrauma 15: 665–74

    Article  PubMed  CAS  Google Scholar 

  12. Sinson G, Bagley LJ, Cecil KM et al. (2001) Magnetization transfer imaging and proton MR spectroscopy in the evaluation of axonal injury: correlation with clinical outcome after traumatic brain injury. AJNR Am J Neuroradiol 22: 143–51

    PubMed  CAS  Google Scholar 

  13. Garnett MR, Blamire AM, Rajagopalan B et al. (2000) Evidence for cellular damage in normal-appearing white matter correlates with injury severity in patients following traumatic brain injury: A magnetic resonance spectroscopy study. Brain 123 (Pt 7): 1403–9

    Article  PubMed  Google Scholar 

  14. Garnett MR, Blamire AM, Corkill RG et al. (2000) Early proton magnetic resonance spectroscopy in normal-appearing brain correlates with outcome in patients following traumatic brain injury. Brain 123 (Pt 10): 2046–54

    Article  PubMed  Google Scholar 

  15. Marshall L, Marshall S, Klauber M et al. (1991) A new clasification of head injury based on computerized tomography. J Neurosurg 75: S14–20

    Google Scholar 

  16. Wedekind C, Fischbach R, Pakos P et al. (1999) Comparative use of magnetic resonance imaging and electrophysiologic investigation for the prognosis of head injury. J Trauma 47: 44–9

    PubMed  CAS  Google Scholar 

  17. Hoelper BM, Soldner F, Chone L, Wallenfang T (2000) Effect of intracerebral lesions detected in early MRI on outcome after acute brain injury. Acta Neurochir Suppl 76: 265–7

    Google Scholar 

  18. Firsching R, Woischneck D, Diedrich M et al. (1998) Early magnetic resonance imaging of brainstem lesions after severe head injury. J Neurosurg 89: 707–12

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag France

About this chapter

Cite this chapter

Lescot, T., Degos, V., Galanaud, D., Abdennour, L., Puybasset, L. (2007). Apport de l’imagerie neurologique dans la prise en charge du patient traumatisé crânien grave. In: Bruder, N., Ravussin, P., Bissonnette, B. (eds) La réanimation neurochirurgicale. Le point sur …. Springer, Paris. https://doi.org/10.1007/978-2-287-68199-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-2-287-68199-8_10

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-287-68198-1

  • Online ISBN: 978-2-287-68199-8

Publish with us

Policies and ethics