Skip to main content

Métabolisme et circulation cérébrale: modifications liées à l’agression cérébrale

  • Chapter
La réanimation neurochirurgicale

Part of the book series: Le point sur … ((POINT))

  • 667 Accesses

Abstrait

L’encéphale ne représente que 2% de la masse corporelle mais sa consommation en O2 (CMRO2: 5 mL/min/100 g) et en glucose (CMRglu: 31 µ mol/min/100 g) est considérable et représente respectivement 20% et 25% de la consommation totale de l’organisme au repos. Le débit sanguin cérébral (DSC) est élevé en conséquence: 20% du débit cardiaque au repos (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Magistretti PJ (1999) Brain energy metabolism. In: Fundamental Neuroscience, Zigmond MJ, Bloom FE, Landis SC, Roberts JL, Squire LR (eds) Academic Press, San Diego pp 389–413

    Google Scholar 

  2. Bergsneider M, Hovda DA, Shalmon E et al. (1997) Cerebral hyperglycolysis following severe traumatic brain injury in humans: a positron emission tomography study. J Neurosurg 86: 241–51

    CAS  PubMed  Google Scholar 

  3. Ito J, Marmarou A, Barzo P et al. (1996) Characterization of edema by diffusion-weighted imaging in experimental traumatic brain injury. J Neurosurg 84: 97–103

    CAS  PubMed  Google Scholar 

  4. Auer LM, Ishiyama N, Hodde KC et al. (1987) Effect of intracranial pressure on bridging veins in rats. J Neurosurg 67: 263–8

    CAS  PubMed  Google Scholar 

  5. Auer LM, Mac Kenzie ET (1984) Physiology of the cerebral venous system. In: The cerebral venous system and its disorders. Kapp JP, Schidek HH (eds). Orlando. Grune and Stratton, pp 169–227

    Google Scholar 

  6. Marmarou A, Shulman K, La Morgese J (1975) Compartmental analysis of compliance and outflow resistance of the cerebrospinal fluid system. J Neurosurg 43: 523–34

    CAS  PubMed  Google Scholar 

  7. Lyons MK, Meyer FB (1990) Cerebrospinal fluid physiology and the management of increased intracranial pressure. Mayo Clin Proc 65: 684–707

    CAS  PubMed  Google Scholar 

  8. Paulson, OB, Strandgaard S, Edvinsson L (1990) Cerebral autoregulation. Cerebrovasc and Brain Metab Rev 2: 161–92

    CAS  Google Scholar 

  9. Strandgaard S, Jones JV, Mac Kenzie ET, Harper AM (1975) Upper Limit of Cerebral Blood Flow Autoregulation in Experimental Renovascular Hypertension in the Baboon. Circulation Research 37: 164–7

    CAS  PubMed  Google Scholar 

  10. Mac Kenzie ET, Mac George AP, Graham DI et al. (1979b) Effects of increasing arterial pressure on cerebral blood flow in the baboon: Influence of the sympathetic nervous system. Pflugers Arch 378: 189–95

    CAS  Google Scholar 

  11. Mchedlishvili G (1980) Physiological Mechanisms Controlling Cerebral Blood Flow. Stroke 11: 240–8

    CAS  PubMed  Google Scholar 

  12. Kohno K, Hoehn-Berlage M, Mies G et al. (1995) Relationship between diffusion-weighted magnetic resonance images, cerebral blood flow and energy state in experimental brain infarction. Magn Reson Imaging 13: 73–80

    CAS  PubMed  Google Scholar 

  13. Mchedlishvili G (1986) Arterial behavior and blood circulation in the brain. Bevan JA (ed). New York, Plenum Press

    Google Scholar 

  14. Grubb RL, Phelps ME, Raichle ME, Ter Pogossian MM (1973) The effects of arterial blood pressure on the regional cerebral blood volume by X ray fluorescence. Stroke 4: 390–9

    PubMed  Google Scholar 

  15. Wolff HG, Lennox WG (1930) Cerebral circulation XII. The effect on pial vessels of variations in the oxygen and carbon dioxide content of the blood. Arch Neurol Psychiatry 23: 1097–120

    Google Scholar 

  16. Fleishman M, Scott J, Haddy FJ (1957) Effect of pH change upon systemic large and small vessel resistance. Circ Res 5: 602–6

    CAS  PubMed  Google Scholar 

  17. Schneider W, Wahl M, Kuschinsky W, Thurau K (1977) The use of microelectrodes for measurement of local H+ activity in the cortical subarachnoidal space of cats. Pflugers Arch 372: 103–7

    CAS  PubMed  Google Scholar 

  18. Raichle ME, Plum F (1972) Hyperventilation and cerebral blood flow. Stroke 3: 566–75

    CAS  PubMed  Google Scholar 

  19. Levasseur JE, Wei EP, Kontos HA, Patterson JL (1979) Responses of pial arterioles after prolonged hypercapnia and hypoxia in the awake rabbit. J Appl Physiol; 46: 89–95

    CAS  PubMed  Google Scholar 

  20. Yonas H, Gurr D, Latchav RE et al. (1987) Xenon computed tomographic blood flow mapping. In: Cerebral blood flow. Physiologic and clinical aspects. Wood JH (ed). New York, McGraw-Hill, pp 220–45

    Google Scholar 

  21. Phelps ME, Grubb RL, Ter Pogossian M (1973) Correlation between PCO2 and regional cerebral blood volume by X ray fluorescence. J Appl Physiol 35: 274–80

    CAS  PubMed  Google Scholar 

  22. Greenberg JH, Alavi A, Reivich M (1978) Local cerebral blood volume response to carbon dioxide in man. Circ Res 43: 324–31

    CAS  PubMed  Google Scholar 

  23. Sakai F, Nakazawa K, Tazaki Y, Ishii K, Hino H, Igarashi H, Kanta T (1985) Regional cerebral blood volume and hematocrit measured in normal human volunteers by single-photon emission computed tomography. J Cereb Blood Flow Metab 5: 207–16

    CAS  PubMed  Google Scholar 

  24. Häggendal E, Johansson B (1965) Effects of arterial carbon dioxide tension and oxygen saturation on cerebral blood flow autoregulation in dogs. Acta Physiol Scand 66(Suppl 258): 27–53

    Google Scholar 

  25. Ekström Jodal B, Häggendal E, Linder LE, Nilsson NJ (1971) Cerebral blood flow autoregulation at high pressures and different levels of carbon dioxide tension in dogs. Europ Neurol 6: 6–10

    Google Scholar 

  26. Raichle ME, Plum F (1972) Hyperventilation and cerebral blood flow. Stroke 3: 566–75

    CAS  PubMed  Google Scholar 

  27. Paulson OB, Olesen J, Christensen MS (1972) Restoration of autoregulation of cerebral blood flow by hypocapnia. Neurology 22: 286–93

    CAS  PubMed  Google Scholar 

  28. Harper AM, Glass HI (1965) Effect of alterations in the arterial carbon dioxide tension on the blood flow through the cerebral cortex at normal and low arterial blood pressures. J Neurol Neurosurg Psychiat 28: 449–52

    CAS  PubMed  Google Scholar 

  29. Auer LM (1978) Pial arterial reactions to hyper-and hypocapnia: a dynamic experimental study in cats. Eur Neurol 17: 351–62

    Google Scholar 

  30. Artru AA, Colley PS (1984) Cerebral blood flow responses to hypocapnia during hypotension. Stroke 15: 878–83

    CAS  PubMed  Google Scholar 

  31. Cold GE (1989) Measurements of CO2 reactivity and barbiturate reactivity in patients with severe head injury. Acta Neurochir 98: 153–63

    CAS  Google Scholar 

  32. Rosner MJ, Becker DP (1987) Cerebral perfusion pressure: link between intracranial pressure and systemic circulation. Cerebral Blood Flow: Physiological and Clinical Aspects. J.H. Wood (ed). New York, McGraw-Hill, pp 425–48

    Google Scholar 

  33. Rosner MJ, Daughton S (1990) Cerebral perfusion pressure management in head injury. J Trauma 30: 933–41

    CAS  PubMed  Google Scholar 

  34. Rosner MJ, Rosner SD, Johnson AH (1995) Cerebral perfusion pressure: management protocol and clinical results. J Neurosurg 83: 949–62

    Article  CAS  PubMed  Google Scholar 

  35. Ursino M, Di Giammarco P (1991) A mathematical model of the relationship between cerebral blood volume and intracranial pressure changes: The generation of plateau waves. Ann Biomed Eng 19: 15–42

    CAS  PubMed  Google Scholar 

  36. Ursino M, Lodi CA, Rossi S et al. (1997) Intracranial pressure dynamics in patients with acute brain damage. J. Appl Physiol 84: 1–13

    Google Scholar 

  37. Ursino M, Lodi CA (1997) A simple mathematical model of the interaction between intracranial pressure and cerebral hemodynamics. J Appl Physiol 82(4): 1256–69

    CAS  PubMed  Google Scholar 

  38. Ter Minassian A, Dubé L, Ursino M, Beydon (2002) Intracranial pressure and cerebral autoregulation in patients with severe traumatic brain injury. Critical Care Med 30: 1616–22

    Google Scholar 

  39. Lodi CA, Ter Minassian A, Beydon L, Ursino M (1998) Modeling cerebral autoregulation and CO2 reactivity in patients with severe head injury. Am J Physiol 274: H 1729–H 1741

    CAS  Google Scholar 

  40. Ursino M, Ter Minassian A, Lodi CA, Beydon L (2000) The effect of mean arterial pressure and CO2 pressure changes on cerebral hemodynamics: In vivo prediction by means of a mathematical model. Am J Physiol 279: H2439–H2455

    CAS  Google Scholar 

  41. Lee JH, Kelly DF, Oertel M et al. (2001) Carbon dioxide reactivity, pressure autoregulation, and metabolic suppression reactivity after head injury: a transcranial Doppler study. J Neurosurg 95: 222–32

    CAS  PubMed  Google Scholar 

  42. Bouma GJ, Muizelaar JP, Stringer WA (1992) Ultra early evaluation of regional cerebral blood flow in severely head injured patients using xenon-enhanced computerized tomography J. Neurosurg 77: 360–8

    CAS  PubMed  Google Scholar 

  43. Sakas DE, Bullock MR, Patterson J et al. (1995) Focal cerebral hyperhemia after focal head injury in humans: a benign phenomenon? J Neurosurg 83: 277–84

    CAS  PubMed  Google Scholar 

  44. Kelly DF, Kordestani RK, Martin NA et al. (1996) Hyperhemia following traumatic brain injury: relationship to intracranial hypertension and outcome. J Neurosurg 85: 762–71

    CAS  PubMed  Google Scholar 

  45. Kelly DF, Martin NA, Kordestani R et al. (1997) Cerebral blood flow as a predictor of outcome following traumatic brain injury. J Neurosurg 86: 633–41

    CAS  PubMed  Google Scholar 

  46. Bergsneider M, Hovda DA, Shalmon E et al. (1997) Cerebral hyperglycolysis following severe traumatic brain injury in humans: a positron emission tomography study. J Neurosurg 86: 241–51

    CAS  PubMed  Google Scholar 

  47. Fonnum F (1984) Glutamate: a neurotransmitter in mammalian brain. J Neurochem 42: 1–11

    CAS  PubMed  Google Scholar 

  48. Danbolt NC, Chaudhry FA, Dehnes Y et al. (1998) Properties and localization of glutamate transporters. Prog Brain Res 116: 23–43

    Article  CAS  PubMed  Google Scholar 

  49. Bergles DE, Jahr CE (1998) Glial contribution to glutamate uptake at Shaffer collateral-commissural synapses in the hippocampus. J Neurosci 18: 7709–16

    CAS  PubMed  Google Scholar 

  50. Pellerin l, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci USA 91: 10625–9

    CAS  PubMed  Google Scholar 

  51. Anderson CM, Swanson RA (2000) Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia 32: 1–14

    CAS  PubMed  Google Scholar 

  52. Bergles DE, Jahr CE (1997) Synaptic activation of glutamate transporters in hippocampal astrocytes. Neuron 19: 1297–308

    CAS  PubMed  Google Scholar 

  53. Norenberg MD, Martinez-Hernandez A (1979) Fine structural localization of glutamine synthetaze in astrocytes of rat brain. Brain Res 161: 303–10

    CAS  PubMed  Google Scholar 

  54. Tsacopoulos M (2002) Metabolic signaling between neurons and glial cells: a short review. J Physiol Paris 96: 283–8

    CAS  PubMed  Google Scholar 

  55. Marcaggi P, Coles JA (2001) Ammonium in nervous tissue: transport across cell membranes, fluxes from neurons to glial cells, and role in signaling. Prog Neurobiol 64: 157–83

    CAS  PubMed  Google Scholar 

  56. Kvamme E, Roberg B, Torgner IA (2000) Phosphate-activated glutaminase and mitochondrial glutamina transport in the brain. Neurochem Res 25: 1407–19

    CAS  PubMed  Google Scholar 

  57. Yukdoff M, Nissim I, Daikhin Y et al. (1993) Brain glutamate metabolism: neuronal astroglial relationships. Dev Neurosci 15: 343–50

    Google Scholar 

  58. Darquié A, Poline JB, Poupon C et al. (2001) Transient decrease in water diffusion observed in human occipital cortex during visual stimulation. Proc Natl Acad Sci USA 98: 9391–5

    PubMed  Google Scholar 

  59. Frahm J, Kruger G, Merboldt KD, Kleinschmidt A (1996) Dynamic uncoupling and recoupling of perfusion and oxidative metabolism during focal brain activation in man. Magn Reson Med 35: 143–8

    CAS  PubMed  Google Scholar 

  60. Sappey-Marinier D, Calabrese G, Fein G, Hugg JW, Biggins C, Weiner MW (1992) Effect of photic stimulation on human visual cortex lactate and phosphates using 1H and 31P magnetic resonance spectroscopy. J Cereb Blood flow Metab 12: 584–92

    CAS  PubMed  Google Scholar 

  61. Andersen BJ, Marmarou A (1992) Functional compartmentalization of energy production in neural tissue. Bran Res 585: 190–5

    CAS  Google Scholar 

  62. Tsacopoulos M, Magistretti PJ (1996) Metabolic coupling between glia and neurons. J Neuroscience 16: 877–85

    CAS  Google Scholar 

  63. Magistretti PJ, Pellerin L, Bonvento G (2002) Neurotransmitters: metabolic and vascular effects. In: Cerebral blood flow and metabolism 2d edition. Edvinsson L, Krause D (eds), Lippincott Williams and Wilkins, Philadelphia, pp 162–71

    Google Scholar 

  64. Clarke DD, Sokoloff L (1999) Circulation and energy metabolism of the brain. In: Sigel GJ, Argranoff BW, Albers RW, Fisher SK, Uhler MD (eds). Basic neurochemistry: molecular, cellular and medical aspects. Lippincot-Raven, Philadelphia, pp 637–69

    Google Scholar 

  65. Fox PT, Raichle ME (1986) Focal physiologic uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci USA 83: 1140–4

    CAS  PubMed  Google Scholar 

  66. Buxton RB, Frank LR (1997) A model for the coupling between cerebral blood flow and oxygen metabolism during neural stimulation. J Cereb Blood Flow Metab 17: 64–72

    CAS  PubMed  Google Scholar 

  67. Fox PT, Raichle ME, Mintum MA, Dence C (1988) Nonoxidative glucose consumption during focal physiologic neural activity. Science 241: 462–4

    CAS  PubMed  Google Scholar 

  68. Marletta MA (1994) Nitric oxyde synthase: aspects concerning structure and catalysis. Cell 78: 927–30

    CAS  PubMed  Google Scholar 

  69. Nathan C (1995) Inducible nitric oxide synthase: regulation subserves function. Curr Top Microbio Immunol 196: 1–4

    CAS  Google Scholar 

  70. Feinstein DL, Galea E, Cermak J et al. (1994) Nitric oxide synthase expression in glial cells: suppression by tyrosine kinase inhibitors. J Neurochem 62: 811–4

    Article  CAS  PubMed  Google Scholar 

  71. Moncada S, Palmer RMJ, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 34: 109–42

    Google Scholar 

  72. Garthwaite J, Boulton CL (1995) Nitric oxide signaling in the central nervous system. Annu Rev Physiol 57: 683–706

    CAS  PubMed  Google Scholar 

  73. Gross SS, Wolin MS (1995) Nitric oxide: pathophysiological mechanisms. Annu Rev Physiol 57: 737–69

    CAS  PubMed  Google Scholar 

  74. Mashour GA, Boock RJ (1999) Effect of shear stress on nitric oxide levels of human cerebral endothelial cells cultured in an artificial capillary system. Brain Res 842: 233–8

    CAS  PubMed  Google Scholar 

  75. Elhusseiny A, Hamel E (2000) Muscarinic but not nicotinic acetylcholine receptors mediate a nitric oxide dependent dilation in brain cortical arterioles: a possible role for the M5 receptor subtype. J Cereb Blood Flow Metab 20: 298–305

    CAS  PubMed  Google Scholar 

  76. Mombouli JV, Vanhoutte PM (1995) Kinins and endothelial control of vascular smooth muscle. Annu Rev Pharmacol Toxicol 35: 679–705

    CAS  PubMed  Google Scholar 

  77. Wellman GC, Nelson MT (2002) Ion channels in cerebral arteries. In: Cerebral blood flow and metabolism 2d edition, Edvinsson L, Krause D (eds), Lippincott Williams and Wilkins, Philadelphia, pp 71–87

    Google Scholar 

  78. Yang G, Iadecola C (1997) Obligatory role of NO in glutamate-dependent hyperemia evoked from cerebellar parallel fibers. Am J Physiol 272: R1155–R61

    CAS  PubMed  Google Scholar 

  79. You J, Johnson TD, Marrelli SP, Bryan RM (1999) Functional heterogeneity of endothelial P2 purinoceptors in the cerebrovascular tree of rat. Am J Physiol 227: H893–H900

    Google Scholar 

  80. Kontos HA, Wei EP, Navari RM et al. (1978) Responses of cerebral arteries and arterioles to acute hypotension and hypertension. Am J Physiol, 234: H371–H383

    CAS  PubMed  Google Scholar 

  81. Mchedlishvili G (1986) Arterial behavior and blood circulation in the brain. Bevan JA (ed). Plenum Press, New York

    Google Scholar 

  82. De Wit C (2004) Connexins pave the way for vascular communication. News Physiol Sci 19: 148–53

    PubMed  Google Scholar 

  83. Iadecola C, Niwa K (2002) Nitric Oxide. In Cerebral blood flow and metabolism 2d edition. Edvinsson L, Krause D (eds), Lippincott Williams and Wilkins, Philadelphia, pp 295–310

    Google Scholar 

  84. Roy CS, Sherrington C (1890) On the regulation of the blood supply of the brain. J Physiol 11: 85–108

    CAS  PubMed  Google Scholar 

  85. Kacem K, Lacombe P, Seylaz J, Bonvento G (1998) Structural organization of the perivascular astrocyte endfeet and their relationship with the endothelial glucose transporter. Glia 23: 1–10

    CAS  PubMed  Google Scholar 

  86. Harder DR, Alkayed NJ, Lange AR et al. (1998) Functional hyperemia in the brain. Hypothesis for astrocyte-derived vasodilator metabolites. Stroke 28: 229–34

    Google Scholar 

  87. Zonta M, Angulo MC, Gobbo S et al. (2003) Neuron to astrocyte signaling is central to the dynamic control of brain microcirculation. Nature Neurosci 6: 43–50

    CAS  PubMed  Google Scholar 

  88. Parri R, Crunelli V (2003) An astrocyte bridge from synapse to blood flow. Nature Neurosci 6: 5–6

    CAS  PubMed  Google Scholar 

  89. Shoami E, Beit-Yannai E, Horowitz M, Kohen R (1997) Oxidative stress in closed-head injury: brain antioxidant capacity as an indicator of functional outcome. J Cereb Blood Flow Metab 17: 1007–19

    Google Scholar 

  90. Lindahl T, Satoh MS, Poirier GG, Klungland A (1995) Post-translational modification of poly (ADP-ribose) polymerase induced by DNA strand breaks. Trends Biochem Sci 20: 405–11

    CAS  PubMed  Google Scholar 

  91. Bolanos JP, Peuchen S, Heales SJR et al. (1994) Nitric oxide mediated inhibition of the mitochondrial respiratory chain in cultured astrocytes. J Neurochem 63: 910–6

    Article  CAS  PubMed  Google Scholar 

  92. Mitrovic B, Ignarro LJ, Montestruque S et al. (1994) Nitric oxide as a potential pathological mechanism in demyelinisation: its differential effects on primary glial cells in vitro. Neuroscience 61: 575–85

    CAS  PubMed  Google Scholar 

  93. Peuchen S, Bolanos JP, Heales SJR et al. (1997) Interrelationships between astrocyte function, oxidative stress and antioxidant status within the central nervous system. Prog Neurobiol 52: 261–81

    CAS  PubMed  Google Scholar 

  94. Chan PH, Chen SF, Yu ACH (1988) Induction of intracellular superoxide radical formation by arachidonic acid and by polyinsaturated fatty acids in primary astrocytic cultures. J Neurochem 50: 1185–93

    CAS  PubMed  Google Scholar 

  95. Chan PH, Fishman RA (1980) Transient formation of superoxide radicals in polyinsaturated fatty acid-induced brain swelling. J Neurochem 35: 1004–7

    CAS  PubMed  Google Scholar 

  96. Chakraborti S, Gurtner GH, Michael JR (1989) Oxidant-mediated activation of phospholipase A2 in pulmonary endothelium. Am J Physiol 257: L430–7

    CAS  PubMed  Google Scholar 

  97. Chan PH, Yurko M, Fishman RA (1982) Phospholipid degradation and cellular edema induced by free radicals in brain cortical slices. J Neurochem 38: 525–31

    CAS  PubMed  Google Scholar 

  98. Gerlach M, Ben-Schachar D, Riederer P, Youdim MBH (1994) Altered brain metabolism of iron as a cause of neurodegenerative diseases? J Neurochem 63: 793–807

    Article  CAS  PubMed  Google Scholar 

  99. Cooper AJL, Kristal BS (1997) Multiple roles of glutathione in the central nervous system. Biol Chem 378: 793–802

    CAS  PubMed  Google Scholar 

  100. Cooper AJL (1997) Glutathione in the brain: disorders of glutathione metabolism. In: Rosenberg RN, Prusiner SB, DiMauro S, Barchi RL, Kunk LM (eds). The molecular and genetic basis of neurological disease. Butterworth-Heinemann, Boston, pp 1195–230

    Google Scholar 

  101. Ho YS, Magnenat JL, Bronson RT, Cao J et al. (1997) Mice deficient cellular glutathione peroxydase develop normally and show no increased sensitivity to hyperoxia. J Biol Chem 272: 16644–51

    CAS  PubMed  Google Scholar 

  102. Dringen R, Gutterer JM, Hirrlinger J (2000) Gluthatione metabolism in brain. Metabolic interaction between astrocytes and neurons in the defense against reactive oxygen species. Eur J Biochem 267: 4912–6

    CAS  PubMed  Google Scholar 

  103. Dringen R (2000) Metabolism and functions of glutathione in brain. Prog Neurobiol 62: 649–71

    CAS  PubMed  Google Scholar 

  104. Kirchhoff F, Dringen R, Giaume C (2001) Pathways of neuron-astrocyte interactions and their possible role in neuroprotection. Eur Arch Psychiatry Clin Neurosci 251: 159–69

    CAS  PubMed  Google Scholar 

  105. Druckarch B, Schepens E, Stoof JC et al. (1998) Astrocyte enhanced neuronal survival is mediated by scavenging of extracellular reactive oxygen species. Free Rad Biol Med 25: 217–20

    Google Scholar 

  106. Drukarch B, Schepens E, Jongenelen CAM et al. (1997) Astrocyte mediated enhancement of neuronal survival is abolished by gluthatione deficiency. Brain Red 770: 123–30

    CAS  Google Scholar 

  107. Desagher S, Glowinski J, Premont J (1996) Astrocytes protect neurons from hydrogen peroxide toxicity. J Neurosci 16: 2553–62

    CAS  PubMed  Google Scholar 

  108. Sanchez-Carbente MDR, Massieu L (1999) Transient inhibition of glutamate uptake in vivo induces neurodegeneration when energy metabolism is impaired. J Neurochem 72: 129–68

    CAS  PubMed  Google Scholar 

  109. Tabernero A, Medina A, Sanchez-Abarca LI et al. (1999) The effect of albumin on astrocyte energy metabolism is not brought about through the control of cytosolic Ca2+ concentrations but by free fatty acid sequestration. Glia 25: 1–9

    CAS  PubMed  Google Scholar 

  110. Verweij BH, Muizelaar JP, Vinas FC et al. (2000) Impaired cerebral mitochondrial function after traumatic brain injury in humans. J Neurosurg 93: 815–20

    CAS  PubMed  Google Scholar 

  111. Verweij BH, Muizelaar P, Vinas FC et al. (2000) Improvement in mitochondrial dysfunction as a new surrogate efficiency measure for preclinical trials: dose-response and time-window profiles for administration of the calcium channel blocker Ziconotide in experimental brain injury. J Neurosurg 93: 829–34

    Article  CAS  PubMed  Google Scholar 

  112. Re DB, Boucraut J, Samuel D et al. (2003) Glutamate transport alteration triggers differentiation-state selective oxidative death of cultured astrocytes: a mechanism different from excitotoxicity depending on intracellular GSH contents. J Neurochem 85: 1159–70

    CAS  PubMed  Google Scholar 

  113. Haid-Aissouni L, Ré DB, Nieoullon A, Kerkerian-Le Goff L (2002) Importance of astrocytic inactivation of synaptically released glutamate for cell survival in the central nervous system. Are astrocytes vulnerable to low intracellular glutamate concentrations? J Physiol Paris 96: 317–22

    Google Scholar 

  114. Chen CJ, Liao SL, Kuo SJ (2000) Gliotoxic action of glutamate on cultured astrocytes. J Neurochem 75: 1557–65

    CAS  PubMed  Google Scholar 

  115. Cho Y, Bannai S (1990) Uptake of glutamate and cysteine in c-6 glioma cells and in cultured astrocytes. J Neurochem 55: 2091–7

    CAS  PubMed  Google Scholar 

  116. Froissard P, Monrocq H, Duval D (1997) Role of gluthathione metabolism in the glutamate-induced programmed cell death of neuronal-like PC 12 cells. Eur J Pharmacol 326: 93–9

    CAS  PubMed  Google Scholar 

  117. Han D, Sen CK, Roy S et al. (1997) Protection against glutamate-induced cytotoxicity in C6 glial cells by thiol antioxidants. Am J Physiol 273: R1771–8

    CAS  PubMed  Google Scholar 

  118. Kato S, Negishi K, Mawatari K, Kuo HC (1992) A mechanism for glutamate toxicity in the C6 glioma cells involving inhibition of cystine uptake leading to glutathione depletion. Neuroscience 48: 903–14

    CAS  PubMed  Google Scholar 

  119. Murphy TH, Schnaar RL, Coyle TJ (1990) Immature cortical neurons are uniquely sensitive to glutamate toxicity by inhibition of cystine uptake. Faseb J 4: 1624–33

    CAS  PubMed  Google Scholar 

  120. Huster D, Reichenbach A, Reichelt W (2000) The glutathione content of retinal Müller (glial) cells: effect of pathological conditions. Neurochem Int 36: 461–9

    CAS  PubMed  Google Scholar 

  121. Bergsneider M, Hovda DA, Shalmon E et al. (1997) Cerebral hyperglycolysis following severe traumatic brain injury in humans: a positron emission tomography study. J Neurosurg 86: 241–51

    CAS  PubMed  Google Scholar 

  122. Sakas DE, Bullock MR, Patterson J et al. (1995) Focal cerebral hyperhemia after focal head injury in humans: a benign phenomenon? J Neurosurg 83: 277–84

    CAS  PubMed  Google Scholar 

  123. Kelly DF, Kordestani RK, Martin NA et al. (1996) Hyperhemia following traumatic brain injury: relationship to intracranial hypertension and outcome. J Neurosurg 85: 762–71

    CAS  PubMed  Google Scholar 

  124. Kelly DF, Martin NA, Kordestani R et al. (1997) Cerebral blood flow as a predictor of outcome following traumatic brain injury. J Neurosurg 86: 633–41

    Article  CAS  PubMed  Google Scholar 

  125. Yoshino A, Hovda DA, Kawamata T et al. (1991) Dynamic changes in local cerebral glucose utilization following cerebral concussion in rats: evidence of a hyper-and subsequent hypometabolic state. Brain Res 561: 106–19

    CAS  PubMed  Google Scholar 

  126. Ginsberg MD, Zhao W, Alonso OF et al. (1997) Uncoupling of local cerebral glucose metabolism and blood flow after fluid-percussion injury in rats. Am J Physiol 272: H2859–68

    CAS  PubMed  Google Scholar 

  127. Bullock R, Maxwell WL, Graham DI et al. (1991) Glial swelling following cerebral contusion: an ultrastructural study. J Neurol Neurosurg Psychiatry 54: 427–34

    CAS  PubMed  Google Scholar 

  128. Castejon OJ (1998) Morphological astrocytic changes in complicated human brain trauma: a light and electron microscopic study. Brain injury 12: 409–27

    CAS  PubMed  Google Scholar 

  129. Zhao X, Ahram A, Berman RF et al. (2003) Early loss of astrocytes after experimental traumatic brain injury. Glia 44: 140–52

    PubMed  Google Scholar 

  130. Kohno K, Hoehn-Berlage M, Mies G et al. (1995) Relationship between diffusion-weighted magnetic resonance images, cerebral blood flow and energy state in experimental brain infarction. Magn Reson Imaging 13: 73–80

    CAS  PubMed  Google Scholar 

  131. Marannes R, Willems R, De-Prins E, Wauquier A (1988) Evidence for a role of the N-methyl-D-aspartate (NMDA) receptor in cortical spreading depression in the rat. Brain Res 457: 226–40

    Google Scholar 

  132. Fabricius M, Jensen LH, Lauritzen M (1993) Microdialysis of interstitial amino acids during spreding depression and anoxic depolarization in rat neocortex. Brain Res 612: 61–9

    CAS  PubMed  Google Scholar 

  133. Basarsky TA, Duffy SN, Andrew RD, Mav Vicar BA (1998) Imaging spreading depression and associated intracellular calcium waves in brain slices. J Neurosci 18: 7189–99

    Google Scholar 

  134. Hansen AJ, Quistorff B, Gjedde A (1980) Relationship between local changes in cortical blood flow and extracellular K+ during spreading depression. Acta Physiol Scand 109: 1–6

    CAS  PubMed  Google Scholar 

  135. Dietrich WD, Feng ZC, Leistra H et al. (1994) Photothrombotic infarction triggers multiple episodes of cortical spreading depression in distant brain regions. J Cereb Blood Flow Metab 14: 20–8

    CAS  PubMed  Google Scholar 

  136. Shinoara M, Dollinger B, Brown G et al. (1979) Cerebral glucose utilization: local changes during and after recovery from spreading cortical depression. Science 203: 188–90

    Google Scholar 

  137. Mayevsky A, Weiss HR (1991) Cerebral blood flow and oxygen cosumption in cortical spreading depression. J Cereb Blood Flow Metab 11: 829–36

    CAS  PubMed  Google Scholar 

  138. Mies G, Paschen W (1984) Regional changes of blood flow, glucose, and ATP content determined on brain sections during a single passage of spreading depression in rat brain cortex. Exp Neurol 84: 249–58

    CAS  PubMed  Google Scholar 

  139. Csiba L, Paschen W, Mies G (1985) Regional changes in tissue pH and glucose content during cortical spreading depression in rat brain. Brain Res 336: 167–70

    CAS  PubMed  Google Scholar 

  140. Back T, Ginsberg MD, Dietrich WD, Watson BD (1996) Induction of spreading depression in the ischemic hemisphere following experimental middle cerebral artery occlusion: effect on infarct morphology. J Cereb Blood Flow Metab 16: 202–13

    CAS  PubMed  Google Scholar 

  141. Nedergaard M, Hansen AJ (1988) Spreading depression is not associated with neuronal injury in the normal brain. Brain Res 449: 395–8

    CAS  PubMed  Google Scholar 

  142. Back T, Kohno K, Hossmann KA (1994) Cortical negative DC deflection s following middle cerebral artery occlusion and KCL-induced spreading depression: effect on blood flow, tissue oxygenation and electroencephalogram. J Cereb Blood Flow Metab 14: 12–9

    CAS  PubMed  Google Scholar 

  143. Iijima T, Mies G, Hossmann KA (1992) Repeated negative DC deflections in rat cortex following middle cerebral artery occlusion are abolished by MK-801. Effect on volume of ischemic injury. J Cereb Blood Flow Metab 12: 727–33

    CAS  PubMed  Google Scholar 

  144. Belayev L, Pinard E, Nallet H et al. (2002) Albumin therapy of transient focal cerebral ischemia. In vivo analysis of dynamic microvascular responses. Stroke 33: 1077–84

    PubMed  Google Scholar 

  145. Mies G, Iijima T, Hossman KA (1993) Correlation between peri-infarct DC shifts and ischemic neuronal damage in cerebral cortex of rat. Neuroreport 4: 709–11

    CAS  PubMed  Google Scholar 

  146. Mies G, Kohno K, Hossmann KA (1994) Prevention of peri-infarct direct current shifts with glutamate antagonist NBQX following occlusion of the middle cerebral artery in the rat. J Cereb Blood Flow Metab 14: 802–7

    CAS  PubMed  Google Scholar 

  147. Gyngell M, Back T, Hoehn-Berlage, Hossman KA (1994) Transient cell depolarisation after permanent middle cerebral artery occlusion: an observation by diffusion-weighted MRI and localised 1H-MRS. Magn Reson Med 31: 337–41

    CAS  PubMed  Google Scholar 

  148. Strong A, Fabricius M, Boutelle MG et al. (2002) Spreading and synchronous depression of cortical activity in acutely injured human brain. Stroke 33: 2738–43

    PubMed  Google Scholar 

  149. Back T, Ginsberg MD, Dietrich WD, Watson BD (1996) Induction of spreading depression in the ischemic hemisphere following experimental middle cerebral artery occlusion: effect on infarct morphology. J Cereb Blood Flow Metab 16: 202–13

    CAS  PubMed  Google Scholar 

  150. Zimmerman M, Seifert V (1998) Endothelin and subarachnoïd hemorrhage: an overview. Neurosurgery 43: 863–75

    Google Scholar 

  151. Dreier JP, Kleeberg J, Petzhold G et al. (2002) Endothelin-1 potently induces Leao’s cortical spreading depression in vivo in the rat: a model for an endothelial trigger of migrainous aura? Brain 125: 102–12

    PubMed  Google Scholar 

  152. Pluta RM, Boock RJ, Afshar JK et al. (1997) Source and cause of endothelin-1 release into cerebrospinal fluid after subarachnoid hemorrhage. J Neurosurg 87: 287–93

    Article  CAS  PubMed  Google Scholar 

  153. Petzhold GC, Einhäupl KM, Dirnagl U, Dreier JP (2003) Ischemia triggered by spreading neuronal activation is induced by endothelin-1 and hemoglobin in the subarachnoid space. Ann Neurol 54: 591–8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag France

About this chapter

Cite this chapter

Ter Minassian, A. (2007). Métabolisme et circulation cérébrale: modifications liées à l’agression cérébrale. In: Bruder, N., Ravussin, P., Bissonnette, B. (eds) La réanimation neurochirurgicale. Le point sur …. Springer, Paris. https://doi.org/10.1007/978-2-287-68199-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-2-287-68199-8_1

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-287-68198-1

  • Online ISBN: 978-2-287-68199-8

Publish with us

Policies and ethics