Skip to main content

Échocardiographie dans le diagnostic de ľinsuffisance cardiaque aiguë

  • Chapter
Book cover L’insuffisance cardiaque aiguë

Part of the book series: Le point sur... ((POINT))

  • 474 Accesses

Abstrait

Ľinsuffisance cardiaque aiguë (ICA) est définie comme ľapparition rapide de symptômes et de signes cliniques, allant des signes de congestion à ľétat de choc, secondaires à un fonctionnement altéré du coeur (1). De nombreux mécanismes peuvent en être à ľorigine: altération de la fonction systolique ou diastolique du ventricule gauche (VG) ou du ventricule droit (VD), atteintes valvulaires, maladies du péricarde, déséquilibre entre la précharge et la postcharge des ventricules, anomalies du rythme ou de la conduction cardiaque.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Nieminen MS, Bohm M, Cowie MR et al. (2005) Executive summary of the guidelines on the diagnosis and treatment of acute heart failure: the Task Force on Acute Heart Failure of the European Society of Cardiology. Eur Heart J. 26(4): 384–416

    Article  PubMed  Google Scholar 

  2. Joseph MX, Disney PJ, Da Costa R, Hutchison SJ (2004) Transthoracic echocardiography to identify or exclude cardiac cause of shock. Chest. 126(5): 1592–7

    Article  PubMed  Google Scholar 

  3. Echocardiographie en réanimation. http://www.pifo.uvsq.fr/hebergement/webrea

  4. Folland ED, Parisi AF, Moynihan PF et al. (1979) Assessment of left ventricular ejection fraction and volumes by real-time, two-dimensional echocardiography. A comparison of cineangiographic and radionuclide techniques. Circulation. 60(4): 760–6

    PubMed  CAS  Google Scholar 

  5. Teichholz LE, Kreulen T, Herman MV, Gorlin R (1976) Problems in echocardiographic volume determinations: echocardiographic-angiographic correlations in the presence of absence of asynergy. Am J Cardiol. 37(1): 7–11

    Article  PubMed  CAS  Google Scholar 

  6. Huttemann E, Schelenz C, Kara F et al. (2004) The use and safety of transoesophageal echocardiography in the general ICU — a minireview. Acta Anaesthesiol Scan. 48(7): 827–36

    Article  CAS  Google Scholar 

  7. Beaulieu Y, Marik PE (2005) Bedside ultrasonography in the ICU: part 2. Chest. 128(3): 1766–81

    Article  PubMed  Google Scholar 

  8. Harrison MR, Clifton GD, Berk MR, DeMaria AN (1989) Effect of blood pressure and afterload on Doppler echocardiographic measurements of left ventricular systolic function in normal subjects. Am J Cardiol. 64(14): 905–8

    Article  PubMed  CAS  Google Scholar 

  9. Kumar A, Anel R, Bunnell E et al. (2004) Effect of large volume infusion on left ventricular volumes, performance and contractility parameters in normal volunteers. Intensive Care Med. 30(7): 1361–9

    Article  PubMed  Google Scholar 

  10. Ross J, Jr (1976) Afterload mismatch and preload reserve: a conceptual framework for the analysis of ventricular function. Prog Cardiovasc Dis. 18(4): 255–64

    Article  PubMed  Google Scholar 

  11. Vieillard-Baron A, Schmitt JM, Beauchet A et al. (2001) Early preload adaptation in septic shock? A transesophageal echocardiographic study. Anesthesiology. 94(3): 400–6

    Article  PubMed  CAS  Google Scholar 

  12. Smith MD, MacPhail B, Harrison MR et al. (1992) Value and limitations of transesophageal echocardiography in determination of left ventricular volumes and ejection fraction. J Am Coll Cardiol. 19(6): 1213–22

    PubMed  CAS  Google Scholar 

  13. Henry WL, Ware J, Gardin JM et al. (1978) Echocardiographic measurements in normal subjects. Growth-related changes that occur between infancy and early adulthood. Circulation. 57(2): 278–85

    PubMed  CAS  Google Scholar 

  14. Wong ND, Gardin JM, Kurosaki T et al. (1995) Echocardiographic left ventricular systolic function and volumes in young adults: distribution and factors influencing variability. Am Heart J. 129(3): 571–7

    Article  PubMed  CAS  Google Scholar 

  15. Schiller NB, Shah PM, Crawford M et al. (1989) Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. American Society of Echocardiography Committee on Standards, Subcommittee on Quantitation of Two-Dimensional Echocardiograms. J Am Soc Echocardiogr. 2(5): 358–67

    PubMed  CAS  Google Scholar 

  16. Amico AF, Lichtenberg GS, Reisner SA et al. (1989) Superiority of visual versus computerized echocardiographic estimation of radionuclide left ventricular ejection fraction. Am Heart J. 118(6): 1259–65

    Article  PubMed  CAS  Google Scholar 

  17. Robotham JL, Takata M, Berman M, Harasawa Y (1991) Ejection fraction revisited. Anesthesiology. 74(1): 172–83

    Article  PubMed  CAS  Google Scholar 

  18. Sarnoff SJ, Berglund E. Ventricular function. I (1954) Starling’s law of the heart studied by means of simultaneous right and left ventricular function curves in the dog. Circulation. 9(5): 706–18

    PubMed  CAS  Google Scholar 

  19. Gorcsan J, 3rd, Denault A, Gasior TA et al. (1994) Rapid estimation of left ventricular contractility from end-systolic relations by echocardiographic automated border detection and femoral arterial pressure. Anesthesiology. 81(3): 553–62; discussion 27A

    Article  PubMed  Google Scholar 

  20. Bargiggia GS, Bertucci C, Recusani F et al. (1989) A new method for estimating left ventricular dP/dt by continuous wave Doppler-echocardiography. Validation studies at cardiac catheterization. Circulation. 80(5): 1287–92

    PubMed  CAS  Google Scholar 

  21. Alam M, Hoglund C, Thorstrand C, Hellekant C (1992) Haemodynamic significance of the atrioventricular plane displacement in patients with coronary artery disease. Eur Heart J. 13(2): 194–200

    PubMed  CAS  Google Scholar 

  22. Alam M, Wardell J, Andersson E et al. (1999) Characteristics of mitral and tricuspid annular velocities determined by pulsed wave Doppler tissue imaging in healthy subjects. J Am Soc Echocardiogr. 12(8): 618–28

    Article  PubMed  CAS  Google Scholar 

  23. Gulati VK, Katz WE, Follansbee WP, Gorcsan J (1996) 3rd. Mitral annular descent velocity by tissue Doppler echocardiography as an index of global left ventricular function. Am J Cardiol. 77(11): 979–84

    Article  PubMed  CAS  Google Scholar 

  24. How to diagnose diastolic heart failure (1998) European Study Group on Diastolic Heart Failure. Eur Heart J. 19(7): 990–1003

    Google Scholar 

  25. Spain MG, Smith MD, Grayburn PA et al. (1989) Quantitative assessment of mitral regurgitation by Doppler color flow imaging: angiographic and hemodynamic correlations. J Am Coll Cardiol. 13(3): 585–90

    PubMed  CAS  Google Scholar 

  26. Hall SA, Brickner ME, Willett DL et al. (1997) Assessment of mitral regurgitation severity by Doppler color flow mapping of the vena contracta. Circulation. 95(3): 636–42

    PubMed  CAS  Google Scholar 

  27. Tribouilloy C, Chen WF, Rey JL et al. (1994) Mitral to aortic velocity-time integral ratio. A non-geometric pulsed-Doppler regurgitant index in isolated pure mitral regurgitation. Eur Heart J. 15(10): 1335–9

    PubMed  CAS  Google Scholar 

  28. Bargiggia GS, Tronconi L, Sahn DJ et al. (1991) A new method for quantitation of mitral regurgitation based on color flow Doppler imaging of flow convergence proximal to regurgitant orifice. Circulation. 84(4): 1481–9

    PubMed  CAS  Google Scholar 

  29. Tribouilloy CM, Enriquez-Sarano M, Bailey KR et al. (2000) Assessment of severity of aortic regurgitation using the width of the vena contracta: A clinical color Doppler imaging study. Circulation. 102(5): 558–64

    PubMed  CAS  Google Scholar 

  30. Tribouilloy C, Avinee P, Shen WF et al. (1991) End diastolic flow velocity just beneath the aortic isthmus assessed by pulsed Doppler echocardiography: a new predictor of the aortic regurgitant fraction. Br Heart J. 65(1): 37–40

    Article  PubMed  CAS  Google Scholar 

  31. Teague SM, Heinsimer JA, Anderson JL et al. (1986) Quantification of aortic regurgitation utilizing continuous wave Doppler ultrasound. J Am Coll Cardiol. 8(3): 592–9

    PubMed  CAS  Google Scholar 

  32. Shiota T, Jones M, Delabays A et al. (1997) Direct measurement of three-dimensionally reconstructed flow convergence surface area and regurgitant flow in aortic regurgitation: in vitro and chronic animal model studies. Circulation. 96(10): 3687–95

    PubMed  CAS  Google Scholar 

  33. Appleton CP, Hatle LK, Popp RL (1988) Relation of transmitral flow velocity patterns to left ventricular diastolic function: new insights from a combined hemodynamic and Doppler echocardiographic study. J Am Coll Cardiol. 12(2): 426–40

    PubMed  CAS  Google Scholar 

  34. Sohn DW, Chai IH, Lee DJ et al. (1997) Assessment of mitral annulus velocity by Doppler tissue imaging in the evaluation of left ventricular diastolic function. J Am Coll Cardiol. 30(2): 474–80

    Article  PubMed  CAS  Google Scholar 

  35. Nagueh SF, Middleton KJ, Kopelen HA et al. (1997) Doppler tissue imaging: a noninvasive technique for evaluation of left ventricular relaxation and estimation of filling pressures. J Am Coll Cardiol. 30(6): 1527–33

    Article  PubMed  CAS  Google Scholar 

  36. Ommen SR, Nishimura RA, Appleton CP et al. (2000) Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures: A comparative simultaneous Doppler-catheterization study. Circulation. 102(15): 1788–94

    PubMed  CAS  Google Scholar 

  37. Kuecherer HF, Muhiudeen IA, Kusumoto FM et al. (1990) Estimation of mean left atrial pressure from transesophageal pulsed Doppler echocardiography of pulmonary venous flow. Circulation. 82(4): 1127–39

    PubMed  CAS  Google Scholar 

  38. Parker MM, Shelhamer JH, Bacharach SL et al. (1984) Profound but reversible myocardial depression in patients with septic shock. Ann Intern Med. 100(4): 483–90

    PubMed  CAS  Google Scholar 

  39. Jardin F, Brun-Ney D, Auvert B et al. (1990) Sepsis-related cardiogenic shock. Crit Care Med 1990;18(10): 1055–60

    Article  PubMed  CAS  Google Scholar 

  40. Vieillard-Baron A, Prin S, Chergui K et al. (2003) Hemodynamic instability in sepsis: bedside assessment by Doppler echocardiography. Am J Respir Crit Care Med. 168(11): 1270–6

    Article  PubMed  Google Scholar 

  41. Jardin F, B V, Beauchet A, Dubourg O, Bourdarias JP (1994) Invasive monitoring combined with two-dimensional echocardiographic study in septic shock Intensive Care Med. 20: 550–4

    Article  PubMed  CAS  Google Scholar 

  42. Bemis CE, Serur JR, Borkenhagen D et al. (1974) Influence of right ventricular filling pressure on left ventricular pressure and dimension. Circ Res. 34(4): 498–504

    PubMed  CAS  Google Scholar 

  43. Jardin F, Vieillard-Baron A (2003) Right ventricular function and positive pressure ventilation in clinical practice: from hemodynamic subsets to respirator settings. Intensive Care Med. 29(9): 1426–34

    Article  PubMed  Google Scholar 

  44. Mansencal N, Joseph T, Vieillard-Baron A et al. (2003) Comparison of different echocardiographic indexes secondary to right ventricular obstruction in acute pulmonary embolism. Am J Cardiol. 92(1): 116–9

    Article  PubMed  Google Scholar 

  45. Kasper W, Meinertz T, Kersting F et al. (1980) Echocardiography in assessing acute pulmonary hypertension due to pulmonary embolism. Am J Cardiol. 45: 567–72

    Article  PubMed  CAS  Google Scholar 

  46. Vieillard-Baron A, Page B, Augarde R et al. (2001) Acute cor pulmonale in massive pulmonary embolism: incidence, echocardiographic pattern, clinical implications and recovery rate. Intensive Care Med. 27(9): 1481–6

    Article  PubMed  CAS  Google Scholar 

  47. Weyman (1982) Cross Sectionnal Echocardiography. In: Fibiger L, editor. Philadelphia. 501–2

    Google Scholar 

  48. Jardin F, Dubourg O, Bourdarias JP (1997) Echocardiographic pattern of acute cor pulmonale. Chest. 111(1): 209–17

    Article  PubMed  CAS  Google Scholar 

  49. Abergel E, Perdrix-Andujar L (2005) Comment évaluer la fonction ventriculaire droite par échocardiographie. MT Cardio. 1(4): 357–63

    Google Scholar 

  50. Barbier C, Loubieres Y, Jardin F, Vieillard-Baron A (2004) Author’s reply to the comment by Dr. Bendjelid. Intensive Care Med. 30: 1848

    Google Scholar 

  51. Mintz GS, Kotler MN, Parry WR, Iskandrian AS, Kane SA (1981) Real-time inferior vena caval ultrasonography: normal and abnormal findings and its use in assessing right-heart function. Circulation. 64(5): 1018–25

    PubMed  CAS  Google Scholar 

  52. Moreno FL, Hagan AD, Holmen JR et al. (1984) Evaluation of size and dynamics of the inferior vena cava as an index of right-sided cardiac function. Am J Cardiol. 53(4): 579–85

    Article  PubMed  CAS  Google Scholar 

  53. Kircher BJ, Himelman RB, Schiller NB (1990) Noninvasive estimation of right atrial pressure from the inspiratory collapse of the inferior vena cava. Am J Cardiol. 66(4): 493–6

    Article  PubMed  CAS  Google Scholar 

  54. Nagueh SF, Kopelen HA, Zoghbi WA (1996) Relation of mean right atrial pressure to echocardiographic and Doppler parameters of right atrial and right ventricular function. Circulation. 93(6): 1160–9

    PubMed  CAS  Google Scholar 

  55. Nagueh MF, Kopelen HA, Zoghbi WA et al. (1999) Estimation of mean right atrial pressure using tissue Doppler imaging. Am J Cardiol. 84(12): 1448–51, A8

    Article  PubMed  Google Scholar 

  56. Kaul S, Tei C, Hopkins JM, Shah PM (1984) Assessment of right ventricular function using two-dimensional echocardiography. Am Heart J. 107(3): 526–31

    Article  PubMed  CAS  Google Scholar 

  57. Meluzin J Spinarova L, Bakala J et al. (2001) Pulsed Doppler tissue imaging of the velocity of tricuspid annular systolic motion; a new, rapid, and non-invasive method of evaluating right ventricular systolic function. Eur Heart J. 22(4): 340–8

    Article  PubMed  CAS  Google Scholar 

  58. Anconina J, Danchin N, Selton-Suty C et al. (1992) [Measurement of right ventricular dP/dt. A simultaneous/comparative hemodynamic and Doppler echocardiographic study]. Arch Mal Coeur Vaiss. 85(9): 1317–21

    PubMed  CAS  Google Scholar 

  59. Bedotto JB, Eichhorn EJ, Grayburn PA (1989) Effects of left ventricular preload and afterload on ascending aortic blood velocity and acceleration in coronary artery disease. Am J Cardiol. 64(14): 856–9

    Article  PubMed  CAS  Google Scholar 

  60. Vieillard-Baron A, Loubieres Y, Schmitt JM et al. (1999) Cyclic changes in right ventricular output impedance during mechanical ventilation. J Appl Physiol 1999;87(5): 1644–50

    PubMed  CAS  Google Scholar 

  61. Jardin F (2005) Aplatissement septal et dyskinésie septale. Réanimation. 14(3): 155–61

    Article  Google Scholar 

  62. Ryan T, Petrovic O, Dillon JC et al. (1985) An echocardiographic index for separation of right ventricular volume and pressure overload. J Am Coll Cardiol. 5(4): 918–27

    Article  PubMed  CAS  Google Scholar 

  63. Vieillard-Baron A, Schmitt JM, Augarde R et al. (2001) Acute cor pulmonale in acute respiratory distress syndrome submitted to protective ventilation: incidence, clinical implications, and prognosis. Crit Care Med. 29(8): 1551–5

    Article  PubMed  CAS  Google Scholar 

  64. Vieillard-Baron A, Prin S, Chergui K et al. (2002) Echo-Doppler demonstration of acute cor pulmonale at the bedside in the medical intensive care unit. Am J Respir Crit Care Med. 166: 1310–9

    Article  PubMed  Google Scholar 

  65. Vieillard-Baron A, Jardin F (2003) Why protect the right ventricle in patients with acute respiratory distress syndrome? Curr Opin Crit Care. 9(1): 15–21

    Article  PubMed  Google Scholar 

  66. Alam M, Wardell J, Andersson E et al. (2000) Right ventricular function in patients with first inferior myocardial infarction: assessment by tricuspid annular motion and tricuspid annular velocity. Am Heart J. 139(4): 710–5

    Article  PubMed  CAS  Google Scholar 

  67. Cohen A, Logeart D, Costagliola D et al. (1998) Usefulness of pulmonary regurgitation Doppler tracings in predicting in-hospital and long-term outcome in patients with inferior wall acute myocardial infarction. Am J Cardiol. 81(3): 276–81

    Article  PubMed  CAS  Google Scholar 

  68. Gillam LD, Guyer DE Gibson TC et al. (1983) Hydrodynamic compression of the right atrium: a new echocardiographic sign of cardiac tamponade. Circulation 68(2): 294–301

    PubMed  CAS  Google Scholar 

  69. Merce J, Sagrista-Sauleda J, Permanyer-Miralda G et al. (1999) Correlation between clinical and Doppler echocardiographic findings in patients with moderate and large pericardial effusion: implications for the diagnosis of cardiac tamponade. Am Heart J. 138(4 Pt 1): 759–64

    Article  PubMed  CAS  Google Scholar 

  70. Cosio FG, Martinez JP Serrano CM et al. (1977) Abnormal septal motion in cardiac tamponande with pulse paradoxus. Echocardiographic and hemodynamic observations. Chest. 71(6): 787–8

    Article  PubMed  CAS  Google Scholar 

  71. Leeman DE, Levine MJ, Come PC (1988) Doppler echocardiography in cardiac tamponade: exaggerated respiratory variation in transvalvular blood flow velocity integrals. J Am Coll Cardiol. 11(3): 572–8

    PubMed  CAS  Google Scholar 

  72. Vieillard-Baron A, Chergui K, Rabiller A et al. (2004) Superior vena cava collapsibility as a gauge of volume status in ventilated septic patients. Intensive Care Med. 30: 1734–1739.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag France

About this chapter

Cite this chapter

Charron, C., Caille, V., Vieillard-Baron, A. (2006). Échocardiographie dans le diagnostic de ľinsuffisance cardiaque aiguë. In: L’insuffisance cardiaque aiguë. Le point sur.... Springer, Paris. https://doi.org/10.1007/978-2-287-34066-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-2-287-34066-6_10

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-287-34065-9

  • Online ISBN: 978-2-287-34066-6

Publish with us

Policies and ethics