Skip to main content

Abstrait

Les protéines sont des macromolécules essentielles à la vie (proteios: qui occupe le 1er rang), composées ďun enchaînement ďacides aminés reliés entre eux par des liaisons peptidiques (CO-NH). Toutes les protéines sont synthétisées à partir ďun répertoire de 20 acides aminés différents, la séquence spécifique de chaque protéine étant sous contrôle génétique. Ľazote est le constituant chimique caractéristique des protéines (mais on trouve aussi de ľazote, en faible quantité, dans ďautres macromolécules comme les acides nucléiques et surtout ľurée).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Stryer L (1997) La biochimie. Flammarion Médecine-sciences, Paris

    Google Scholar 

  2. Besoins énergétiques et besoins en protéines. Rapport OMS/FDA/UNE (1986). Éditions de ľOMS, Genève

    Google Scholar 

  3. Arnal M, Obled C, Attaix D et al. (1987) Dietary control of protein turnover. Diab Metab 13: 630–42

    CAS  Google Scholar 

  4. Manatt MW, Garcia PA (1992) Nitrogen balance: concepts and techniques. In: Nissen S (ed) Modern methods in protein nutrition and metabolism. Academic press, New York, p. 9

    Google Scholar 

  5. Beaufrère B (1993) Évaluation du métabolisme protéique. In: Ricour C, Ghisolfi J, Putet G, Goulet O (ed) Traité de nutrition pédiatrique. Maloine, Paris, p. 421

    Google Scholar 

  6. Twyman D, Young AB, Ott L et al. (1985) High protein enteral feedings: a means of achieving positive nitrogen balance in head injured patients. JPEN J Parenter Enteral Nutr 9: 679–84

    PubMed  CAS  Google Scholar 

  7. Wolfe RR (1992) Radioactive and stable isotope tracers in biomedicine. In: Principles and practice of kinetic analysis. Wiley-Liss, New York, p 357

    Google Scholar 

  8. Waterlow JC, Garlick PJ, Millward DJ (1978) Protein turnover in mammalian tissues and in the whole body. Publishing Company, Amsterdam, North Holland

    Google Scholar 

  9. Bier DM, Matthews DE, Young VR (1985) Interpretation of aminoacid kinetics studies in the context of whole body protein metabolism. In: Garrow JS, Halliday D (ed) Substrate and energy metabolism. John Libbey, London, p. 27

    Google Scholar 

  10. Matthews DE, Motil KJ, Rohrbaugh DK et al. (1980) Measurement of leucine metabolism in man from a primed, continuous infusion of L-[1-13C] leucine. Am J Physiol 238: E473–9

    PubMed  CAS  Google Scholar 

  11. Beaufrère B, Fournier V, Salle B, Putet G (1992) Leucine kinetics in fed low-birth-weight infants: importance of splanchnic tissues. Am J Physiol 263: E214–20

    PubMed  Google Scholar 

  12. Boirie Y, Gachon P, Beaufrere B (1997) Splanchnic and whole-body leucine kinetics in young and elderly men. Am J Clin Nutr 65(2): 489–95

    PubMed  CAS  Google Scholar 

  13. Cayol M, Boirie Y, Rambourdin F et al. (1997) Influence of protein intake on whole body and splanchnic leucine kinetics in humans. Am. J. Physiol 272: E584–91

    PubMed  CAS  Google Scholar 

  14. Schwenk WF, Beaufrère B, Haymond MW (1985) Use of reciprocal pool specific activities to model leucine metabolism in humans. Am J Physiol 257: E646–50

    Google Scholar 

  15. Boirie Y, Gachon P, Corny S et al. (1996) Acute postprandial changes in leucine metabolism as assessed with an intrinsically labeled milk protein. Am J Physiol 271 (6 Pt 1): E1083–91

    PubMed  CAS  Google Scholar 

  16. Boirie Y, Dangin M, Gachon P et al. (1997) Slow and fast dietary proteins differently modulate postprandial protein accretion. Proc Natl Acad Sci USA 94: 14930–5

    Article  PubMed  CAS  Google Scholar 

  17. Tessari P, Barazzoni R, Zanetti M et al. (1996) Differential response of oxidation to exogenous availability of amino acids to sustain protein synthesis in vivo. Am J Physiol 271: E733–41

    PubMed  CAS  Google Scholar 

  18. Guillet C, Zangarelli A, Gachon P et al. (2004) Whole body, protein breakdown is less inhibited by insulin, but still responsive to amino acid, in nondiabetic elderly subjects. J Clin Endocrinol Metab 89 (12): 6017–24

    Article  PubMed  CAS  Google Scholar 

  19. Wolfe RR (1996) Herman Award Lecture. Relation of metabolic studies to clinical nutrition-the example of burn injury. Am J Clin Nutr 64: 800–8

    PubMed  CAS  Google Scholar 

  20. Golden MH, Waterlow JC, Picou D (1977) Protein turnover, synthesis and breakdown before and after recovery from protein-energy malnutrition. Clin Sci Mol Med 53: 473–7

    PubMed  CAS  Google Scholar 

  21. Etienne J (2004) Biochimie génétique, biologie moléculaire. Masson, Paris.

    Google Scholar 

  22. Welle S, Nair KS (1990) Relationship of resting metabolic rate to body composition and protein turnover. Am J Physiol 258: E990–8

    PubMed  CAS  Google Scholar 

  23. Breuillé D, Rose F, Arnal M et al. (1994) Sepsis modifies the contribution of different organs to whole-body protein synthesis in rats. Clin Sci 86: 663–9

    PubMed  Google Scholar 

  24. Meek SE, Persson M, Ford GC, Nair KS (1988) Differential regulation of amino acid exchange and protein dynamics across splanchnic and skeletal muscle beds by insulin in healthy human subjects. Diabetes 47: 1824–35

    Article  Google Scholar 

  25. Garlick PJ Mc Nurlan MA, Essen P, Wernerman J (1994) Measurement of tissue protein syndthesis rates in vivo: a critical analysis of contrasting methods. Am J Physiol 266: E287–97

    PubMed  CAS  Google Scholar 

  26. Rennie MJ, Smith K, Watt PW, (1994) Measurement of human tissue protein synthesis: an optimal approach. Am J Physiol 266: E298–307

    PubMed  CAS  Google Scholar 

  27. Ballmer PE, Mc Nurlan MA, Milne E, Garlick PJ (1990) Measurement of albumin synthesis in humans: a new approach employing stable isotopes. Am J Physiol 259: E797–803

    PubMed  CAS  Google Scholar 

  28. Barle H, Nyberg B, Essen P et al. (1997) The synthesis rates of total liver protein and plasma albumin determined simulataneouly in vivo in humans. Hepatology 25: 154–8

    PubMed  CAS  Google Scholar 

  29. Nakshabendi IM, Obeidat W, Russell, RI et al. (1995) Gut mucosal protein synthesis measured using intravenous and intragastric delivery of stable tracer amino acids. Am J Physiol 269: E996–9

    PubMed  CAS  Google Scholar 

  30. Walrand S, Guillet C, Gachon P et al. (2004) Protein synthesis rates of human PBMC and PMN can be determined simultaneously in vivo by using small blood samples. Am J Physiol Cell Physiol 286: C1474–8

    Article  PubMed  CAS  Google Scholar 

  31. Gelfand RA, Barrett EJ (1987) Effect of physiologic hyperinsulinemia on skeletal muscle protein synthesis J Clin Invest 80: 1–6

    PubMed  CAS  Google Scholar 

  32. Biolo G, Declan Fleming RY, Wolfe RR (1995) Physiologic hyperinsulinemia stimulates protein synthesis and enhances transport of selected amino acids in human skeletal muscle. J Clin Invest 95: 811–9

    PubMed  CAS  Google Scholar 

  33. Rooyackers OE, Adey DB, Ades PA, Nair KS (1996) Effect of age on in vivo rates of mitochondrial protein synthesis in human skeletal muscle. Proc Natl Acad Sci USA 93: 15364–9

    Article  PubMed  CAS  Google Scholar 

  34. Guillet C, Boirie Y, Walrand S (2004) An integrative approach to in vivo protein synthesis measurement: from whole tissue to specific proteins. Curr Opin Clin Nutr Metab Care 7: 531–8

    Article  PubMed  CAS  Google Scholar 

  35. Guillet C, Zangarelli A, Mishellany A et al. (2004) Mitochondrial and sarcoplasmic proteins, but not myosin heavy chain, are sensitive to leucine supplementation in old rat skeletal muscle. Exp Gerontol 39: 745–51

    Article  PubMed  CAS  Google Scholar 

  36. Zangarelli A, Walrand S, Guillet, C et al. (2004) Centrifugation-based isolation of myosin for measurement of its synthesis rate in small muscle samples. Anal Biochem 327: 55–60

    Article  PubMed  CAS  Google Scholar 

  37. Jaleel A, Nehra V, Persson XM et al. (2006) In Vivo Measurement Of Synthesis Rate Of Multiple Plasma Proteins In Humans. Am J Physiol Endocrinol Metab 291: E190–7

    Article  PubMed  CAS  Google Scholar 

  38. Coux O, Tanaka K, Goldberg AL (1996) Structure and functions of the 20S and 26S proteasomes. Annu, Rev Biochem 65: 801–47

    Article  CAS  Google Scholar 

  39. Glickman MH, Ciechanover A (2002) The ubiquitin-protea-some proteolytic pathway: destruction for the sake of construction. Physiol Rev 82: 373–428

    PubMed  CAS  Google Scholar 

  40. Dhananjayan SC, Ismail A, Nawaz Z (2005) Ubiquitin and control of transcription. Essays Biochem 41: 69–80

    PubMed  CAS  Google Scholar 

  41. Blommaart EF, Luiken JJ, Meijer AJ (1997) Autophagic proteolysis: Control and specificity. Histochem J 29: 365–85

    Article  PubMed  CAS  Google Scholar 

  42. Béchet D, Tassa A, Taillandier D et al. (2005) Lysosomal proteolysis in skeletal muscle. Int J Biochem Cell Biol 37: 2098–114

    Article  PubMed  CAS  Google Scholar 

  43. Attaix D, Taillandier D (1998) The critical role of the ubiquitin-proteasome pathway in muscle asting in comparison to lysosomal and Ca2+-dependent systems. Adv Mol Cell Biol 27: 235–66

    CAS  Google Scholar 

  44. Deval C, Mordier S, Obled C et al. (2001) Identification of cathepsin L as a differentially expressed message associated with skeletal muscle wasting. Biochem J 360: 143–50

    Article  PubMed  CAS  Google Scholar 

  45. Lecker SH, Jagoe RT, Gilbert A et al. (2004) Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J 18: 39–51

    Article  PubMed  CAS  Google Scholar 

  46. Mitch WE, Goldberg AL (1996) Mechanisms of muscle wasting. The role of the ubiquitin-proteasome pathway. N Engl J Med 335: 1897–905

    Article  PubMed  CAS  Google Scholar 

  47. Li P, Gregg JL, Wang N et al. (2005) Compartmentalization of class II antigen presentation: contribution of cytoplasmic and endosomal processing. Immunol Rev 207: 206–17

    Article  PubMed  CAS  Google Scholar 

  48. Goll DE, Thompson VF, Li H et al. (2003) The calpain system. Physiol Rev 83: 731–801

    PubMed  CAS  Google Scholar 

  49. Combaret L, Taillandier D, Voisin L et al. (1996) No alteration in gene expression of components of the ubiquitin-proteasome proteolytic pathway in dystrophin-deficient muscles. FEBS Lett 393: 292–6

    Article  PubMed  CAS  Google Scholar 

  50. Bartoli M, Richard I (2005) Calpains in muscle wasting. Int J Biochem Cell Biol 37: 2115–33

    Article  PubMed  CAS  Google Scholar 

  51. Fuentes-Prior P, Salvesen GS (2004) The protein structures that shape caspase activity, specificity, activation and inhibition. Biochem J 384: 201–32

    Article  PubMed  CAS  Google Scholar 

  52. Eckhart L, Ballaun C, Uthman A et al. (2005) Identification and characterization of a novel mammalian caspase with proapoptotic activity. J Biol Chem 280: 35077–80

    Article  PubMed  CAS  Google Scholar 

  53. Du J, Wang X, Miereles C et al. (2004) Activation of caspase-3 is an initial step triggering accelerated muscle proteolysis in catabolic conditions. J Clin Invest 113: 115–23

    Article  PubMed  CAS  Google Scholar 

  54. Wei W, Fareed MU, Evenson A et al. (2005) Sepsis stimulates calpain activity in skeletal muscle by decreasing calpastatin activity but does not activate caspase-3. Am J Physiol Regul Integr Comp Physiol 288: R580–90

    PubMed  CAS  Google Scholar 

  55. Wing SS (2003) Deubiquitinating enzymes-the importance of driving in reverse along the ubiquitin-proteasome pathway. Int J Biochem Cell Biol 35: 590–605

    Article  PubMed  CAS  Google Scholar 

  56. Jagoe T, Tawa NE Jr, Goldberg AL (2004) Protein and amino acid metabolism in muscle. In: Engel AG, Franzini-Amstrong C (ed) Myology, 3rd edition. McGraw-Hill, New York, p. 535.

    Google Scholar 

  57. Attaix D, Ventadour S, Codran A et al. (2005) The ubiquitin-proteasome system and skeletal muscle wasting. Essays Biochem 41: 173–86

    PubMed  CAS  Google Scholar 

  58. Cuervo AM, Dice JF (1996) A receptor for the selective uptake and degradation of proteins by lysosomes. Science 273: 501–3

    Article  PubMed  CAS  Google Scholar 

  59. Wing SS, Chiang HL, Goldberg AL, Dice JF (1991) Proteins containing peptide sequences related to Lys-Phe-Glu-Arg-Gln are selectively depleted in liver and heart, but not skeletal muscle, of fasted rats. Biochem J 275: 165–9

    PubMed  CAS  Google Scholar 

  60. Rogers S, Wells R, Rechsteiner M (1986) Amino acids sequences common to rapidly degraded proteins: the PEST hypothesis. Science 234: 364–8

    Article  PubMed  CAS  Google Scholar 

  61. Bachmair A, Finley D, Varshavsky A (1986) In vivo half-life of a protein is a function of its amino terminal residue. Science 234: 179–86

    Article  PubMed  CAS  Google Scholar 

  62. Lecker SH, Solomon V, Price SR et al. (1999) Ubiquitin conjugation by the N-end rule pathway and mRNAs for its components increase in muscles of diabetic rats. J Clin Invest 104: 1411–20

    PubMed  CAS  Google Scholar 

  63. Young VR, Munro HN (1978) Ntau-methylhistidine (3-methyl-histidine) and muscle protein turnover: an overview. Fed Proc 37: 2291–300

    PubMed  CAS  Google Scholar 

  64. Rennie MJ, Millward DJ (1983) 3-methylhistidine excretion and the urinary 3-methylhistidine/creatinine ratio are poor indicators of skeletal muscle protein breakdown. Clin Sci 65: 217–25

    PubMed  CAS  Google Scholar 

  65. Combaret L, Tilignac T, Claustre A et al. (2002) Torbafylline (HWA 448) inhibits enhanced skeletal muscle ubiquitin-proteasome-dependent proteolysis in cancer and septic rats. Biochem J 361: 185–92

    Article  PubMed  CAS  Google Scholar 

  66. Combaret L, Taillandier D, Dardevet D et al. (2004) Glucocorticoids regulate mRNA levels of subunits of the 19S regulatory complex of the 26 S proteasome in fast-twitch skeletal muscles. Biochem J 378: 239–46

    Article  PubMed  CAS  Google Scholar 

  67. Combaret L, Adegoke OA, Bedard N et al. (2005) USP 19 is a ubiquitin-specific protease regulated in rat skeletal muscle during catabolic states. Am J Physiol Endocrinol Metab 288: E693–700

    Article  PubMed  CAS  Google Scholar 

  68. Mansoor O, Beaufrère B, Boirie Y et al. (1996) Increased ARNm levels for components of the lysosomal, Ca2+-activated and ATP-ubiquitin-dependent proteolytic pathways in skeletal muscle from head trauma patients. Proc Natl Acad Sci USA 93: 2714–8

    Article  PubMed  CAS  Google Scholar 

  69. Tiao G, Hobler S, Wang JJ et al. (1997) Sepsis is associated with increased mRNAs of the ubiquitin-proteasome proteolytic pathway in human skeletal muscle. J Clin Invest 99: 163–8

    Article  PubMed  CAS  Google Scholar 

  70. Williams AB, Sun X, Fischer JE, Hasserlgren P-O (1999) The expression of genes in the ubiquitin-proteasome proteolytic pathway is increased in skeletal muscle from patients with cancer. Surgery 126: 744–9

    PubMed  CAS  Google Scholar 

  71. Jones SW, Hill RJ, Krasney PA et al. (2004) Disuse atrophy and exercise rehabilitation in humans profoundly affects the expression of genes associated with the regulation of skeletal muscle mass. FASEB J 18: 1025–7

    PubMed  CAS  Google Scholar 

  72. Bossola M, Muscaritoli M, Costelli P et al. (2003) Increased muscle proteasome activity correlates with disease severity in gastric cancer patients. Ann Surg 237: 384–9

    Article  PubMed  Google Scholar 

  73. Millward J (1995) Insulin and the regulation of amino acid catabolism and protein turnover. In: Cynober LA (ed) Amino acid metabolism and therapy in health and nutritional disease. CRC press, New York, p. 127

    Google Scholar 

  74. Tessari P, Trevisan R, Inchiostro S et al. (1996) Dose-response curves of insulin on leucine kinetics in humans. Am J Physiol 251: E334–42

    Google Scholar 

  75. Castellino P, Luzi L, Simonson DC et al. (1997) Effect of insulin plasma amino acid concentrations on leucine metabolism in man. J Clin Invest 80: 1784–93

    Google Scholar 

  76. Horber FF, Haymond MW (1990) Human growth hormone prevents the protein catabolic side effects of prednisone. J Clin Invest 86: 265–72

    PubMed  CAS  Google Scholar 

  77. Glass DJ (2005) Skeletal muscle hypertrophy and atrophy signaling pathways. Int J Biochem Cell Biol 37: 1974–84

    PubMed  CAS  Google Scholar 

  78. Miles JM, Nissen SL, Gerich JE, Haymond MW (1984) Effects of epinephrine infusion on leucine and alanine kinetics in humans. Am J Physiol 247: E166–72

    PubMed  CAS  Google Scholar 

  79. Kraenzlin ME, Keller U, Keller A et al. (1989) Elevation of plasma epinephrine concentrations inhibits proteolysis and leucine oxidation in man via beta-adrenergic mechanisms. J Clin Invest 84: 388–93

    PubMed  CAS  Google Scholar 

  80. Yang YT, MacElligott MA (1989) Multiple actions of ß-adrenergic agonists on skeletal muscle and adipose tissue. Biochem J 261: 1–10

    PubMed  CAS  Google Scholar 

  81. Costelli P, Garcia-Martinez C, Llovera M et al. (1995) Muscle protein waste in tumor-bearing rats is effectively antagonized by a ß2-adrenergic agonist (clenbuterol). J Clin Invest 95: 2367–72

    PubMed  CAS  Google Scholar 

  82. Couet C, Fukagawa NK, Matthews DE et al. (1990) Plasma amino acid kinetics during acute states of glucagon deficiency and excess in healthy adults. Am J Physiol 258: E78–85

    PubMed  CAS  Google Scholar 

  83. Beaufrère B, Horber FF, Schwenk WF et al. (1989) Glucocorticoids increase leucine oxidation and impair leucine balance in humans. Am J Physiol 257: E712–21

    PubMed  Google Scholar 

  84. Dardevet D, Sornet C, Taillandier D, et al. (1995) Sensitivity and protein turnover response to glucorticoids are different in skeletal muscle from adult and old rats. Lack of regulation of the ubiquitin-proteasome proteolytic pathway in aging. J Clin Invest 96: 2113–9

    PubMed  CAS  Google Scholar 

  85. Hasselgren PO, Menconi MJ, Fareed MU et al. (2005) Novel aspects on the regulation of muscle wasting in sepsis. Int J Biochem Cell Biol 37: 2156–68

    Article  PubMed  CAS  Google Scholar 

  86. May ME, Buse MG (1989) Effects of branched-chain amino acids on protein turnover. Diabetes Metab Rev 5: 227–45

    Article  PubMed  CAS  Google Scholar 

  87. Dardevet D, Sornet C, Bayle G et al. (2002) Postprandial stimulation of muscle protein synthesis in old rats can be restored by a leucine-supplemented meal. J Nutr 132: 95–100

    PubMed  CAS  Google Scholar 

  88. Combaret L, Dardevet D, Rieu I et al. (2005) A leucine-supplemented diet restores the defective postprandial inhibition of proteasome-dependent proteolysis in aged rat skeletal muscle. J Physiol 569: 489–99

    Article  PubMed  CAS  Google Scholar 

  89. Pellett PL, Young VR (1991) The effects of different levels of energy intake on protein metabolism and of different levels of protein intake on energy metabolism: a statistical evaluation from the published literature. In: Scrimshaw NS, Schürch B (ed) Protein energy interactions. IDECG, Waterville valley, NH, p 81

    Google Scholar 

  90. Young VR, Yu YM, Fukagawa NK (1991) Whole body energy and nitrogen (protein) relationships. In: Kinney JM, Tucker HN (ed) Energy metabolism-tissues determinants and cellular corollaries. Raven Press, New York, p 139

    Google Scholar 

  91. Boirie Y, Beaufrère B (1995) Control of amino acid metabolism by lipid, ketone bodies and glucose substrates. In: Cynober LA (ed) Amino acid metabolism and therapy in health and nutritional disease. CRC Press, New York, p 157

    Google Scholar 

  92. Mc Cargar LJ, Clandinin MT, Belcastro AN, Walker K (1989) Dietary carbohydrate-to-fat ratio influence on whole body nitrogen retention, substrate utilization, and hormone response in healthy male subjects. Am J Clin Nutr 49: 1169–78

    Google Scholar 

  93. Richardson DP, Wayler AH, Scrimshaw NS, Young VR (1989) Quantitative effect of an isoenergetic of fat for carbohydrate on dietary protein utilization in healthy young men. Am J Clin Nutr 32: 2217–26

    Google Scholar 

  94. Beaufrère B, Chassard D, Broussole C et al. (1992) Effects of D-ß-hydroxybutyrate, long and medium chain triglycerides on leucine metabolism in man. Am J Physiol 262: E268–74

    PubMed  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag France, Paris

About this chapter

Cite this chapter

Attaix, D., Boirie, Y. (2007). Métabolisme protéique. In: Traité de nutrition artificielle de l’adulte. Springer, Paris. https://doi.org/10.1007/978-2-287-33475-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-2-287-33475-7_6

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-287-33474-0

  • Online ISBN: 978-2-287-33475-7

Publish with us

Policies and ethics