Skip to main content
  • 1385 Accesses

Abstrait

Ľétude des effets métaboliques et nutritionnels de ľhypoxie est importante, compte tenu du rôle central de ľoxygène en physiologie et en pathologie. De façon physiologique, pendant la période prénatale, ľhypoxie est responsable du développement de la compartimentation cellulaire et sert véritablement de force motrice de la morphogenèse des animaux supérieurs (1). En effet, le développement ďorganites subcellulaires, de membranes, ďun lit capillaire périphérique, du système cardiovasculaire et ďorganes pour les échanges gazeux est lié primitivement à la nécessité de pourvoir les cellules en oxygène. En période postnatale par exemple, ľhypoxie permet, via la vasoconstriction hypoxique, une optimisation des rapports ventilation perfusion (2) ou encore la zonation hépatique avec des hépatocytes périveineux glycolytiques et périportaux gluconéogéniques (3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Land SC (2004) Hochachka’s “Hypoxia Defense Strategies” and the development of the pathway for oxygen. Comp Biochem Physiol B Biochem Mol Biol 139: 415–33

    Article  PubMed  Google Scholar 

  2. Weir EK, Lopez-Barneo J, Buckler KJ, Archer SL (2005) Acute oxygen-sensing mechanisms. N Engl J Med 353: 2042–55

    Article  PubMed  CAS  Google Scholar 

  3. Jungermann K, Kietzmann T (1996) Zonation of parenchymal and non parenchymal metabolism in liver. Annu Rev Nutr 16: 179–203

    Article  PubMed  CAS  Google Scholar 

  4. Bowton DL, Scuderi PE, Haponik EF (1994) The incidence and effect on outcome of hypoxemia in hospitalized medical patients. Am J Med 97: 38–46

    Article  PubMed  CAS  Google Scholar 

  5. Long term domiciliary oxygen therapy in chronic hypoxic cor pulmonale complicating chronic bronchitis and emphysema (1981) Report of the Medical Research Council Working Party. Lancet 1: 681–6

    Google Scholar 

  6. Noctural Oxygen Therapy Trial Group (1980) Continuous or nocturnal oxygen therapy in hypoxemic chronic obstructive lung disease: a clinical trial. Ann Intern Med 93: 391–8

    Google Scholar 

  7. Chailleux E, Fauroux B, Binet F et al. (1996) Predictors of survival in patients receiving domiciliary oxygen therapy or mechanical ventilation. A 10-year analysis of ANTADIR Observatory. Chest 109:741–9

    PubMed  CAS  Google Scholar 

  8. Jones DP (1996) Cellular energetics and biochemistry of hypoxia. In: GG Haddad, and G Lister(eds) Tissue oxygen deprivation. From molecular to integrated function. Marcel Dekker, New York p 25

    Google Scholar 

  9. Haddad JJ (2004) Oxygen sensing and oxidant/redox-related pathways. Biochem Biophys Res Commun 316: 969–77

    Article  PubMed  CAS  Google Scholar 

  10. Kumar GK, Klein JB (2004) Analysis of expression and post-translational modification of proteins during hypoxia. J Appl Physiol 96: 1178–86

    Article  PubMed  CAS  Google Scholar 

  11. Gnaiger E (2001) Bioenergetics at low oxygen: dependence of respiration and phosphorylation on oxygen and adenosine diphosphate supply. Respir Physiol 128: 277–97

    Article  PubMed  CAS  Google Scholar 

  12. Semenza GL, Neifelt MK, Chi SM, Antonarakis SE (1991) Hypoxia-inducible nuclear factors bind to an enhancer element located 3′ to the human erythropoietin gene. Proc Natl Acad Sci USA 88: 5680–4

    Article  PubMed  CAS  Google Scholar 

  13. Semenza GL (2004) O2-regulated gene expression: transcriptional control of cardiorespiratory physiology by HIF-1. J Appl Physiol 96:1173–7

    Article  PubMed  CAS  Google Scholar 

  14. Askew EW (2002) Work at high altitude and oxidative stress: antioxidant nutrients. Toxicology 180: 107–19

    Article  PubMed  CAS  Google Scholar 

  15. Fink MP, (2002) Bench-to-bedside review: cytopathic hypoxia. Crit Care 6: 491–9

    Article  PubMed  Google Scholar 

  16. Hochachka PW, Buck LT, Doll CJ, Land SC (1996) Unifying theory of hypoxia tolerance: Molecular metabolic defense and rescue mechanisms for surviving oxygen lack. Proc Natl Acad Sci USA 93: 9493–8

    Article  PubMed  CAS  Google Scholar 

  17. Guerrero K, Wuyam B, Mezin P et al. (2005) Functional coupling of adenine nucleotide translocase and mitochondrial creatine kinase is enhanced after exercise training in lung transplant skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 289: R1144–54

    PubMed  CAS  Google Scholar 

  18. Mettauer B, Lampert E, Petitjean P et al. (1996) Persistent exercise intolerance following cardiac transplantation despite normal oxygen transport. Int J Sports Med 17: 277–86

    Article  PubMed  CAS  Google Scholar 

  19. Forster RE, Estabrook RW (1993) Is oxygen an essential nutrient? Annu Rev Nutr 13: 383–403

    Article  PubMed  CAS  Google Scholar 

  20. Kerr RA (1998) Early life thrived despite early travails. Science 284: 2111–3

    Article  Google Scholar 

  21. Hoppeler H, Vogt M, Weibel ER, Fluck M (2003) Response of skeletal muscle mitochondria to hypoxia. Exp Physiol 88: 109–19

    Article  PubMed  CAS  Google Scholar 

  22. Leverve X, Fontaine E, Péronnet F (1996) Métabolisme énergétique. Encycl Med Chir Endocrinologie-Nutrition. Elsevier, Paris, 10-371-A-10: 1–12

    Google Scholar 

  23. Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by chemi-osmotic type of mechanisms. Nature 191: 144–8

    Article  PubMed  CAS  Google Scholar 

  24. Hochachka PW (1994) Solving the common problem: matching ATP synthesis to ATP demand during exercise. Adv Vet Sci Comp Med 38A: 41–56

    PubMed  CAS  Google Scholar 

  25. Arthur PG, Franklin CE, Cousins KL et al. (1997) Energy turnover in the normoxic and anoxic turtle heart. Comp Biochem Physiol A Physiol 117: 121–6

    Article  PubMed  CAS  Google Scholar 

  26. Lundby C et Van Hall G (2002) Substrate utilization in sea level residents during exercise in acute hypoxia and after 4 weeks of acclimatization to 4100 m. Acta Physiol Scand 176: 195–201

    Article  PubMed  CAS  Google Scholar 

  27. Roberts AC, Butterfield GE, Cymerman A et al. (1996) Acclimatization to 4,300-m altitude decreases reliance on fat as a substrate. J Appl Physiol 81: 1762–71

    PubMed  CAS  Google Scholar 

  28. Pison CM, Chauvin C, Fontaine E et al. (1995) Mechanism of gluconeogenesis inhibition in rat hepatocytes isolated after in vivo hypoxia. Amer J Physiol-Endocrinol Met 31: E965–E73

    Google Scholar 

  29. Pison CM, Chauvin C, Perrault H et al. (1998) In vivo hypoxic exposure impairs metabolic adaptations to a 48 hour fast in rats. Eur Respir J 12: 658–65

    Article  PubMed  CAS  Google Scholar 

  30. Schwebel C, Pin I, Barnoud D et al. (2000) Prevalence and consequences of nutritional depletion in lung transplant candidates. Eur Respir J 16: 1050–5

    Article  PubMed  CAS  Google Scholar 

  31. Marquis K, Debigare R, Lacasse Y et al. (2002) Midthigh muscle cross-sectional area is a better predictor of mortality than body mass index in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 166: 809–13

    Article  PubMed  Google Scholar 

  32. Cano JM, Roth H, Court-Fortune I et al., and the Clinical Research Group of the Société Fancophone de Nutrition Entérale et Partentérale (2002) Nutritional depletion in patients on long term oxygen therapy or home mechanical ventilation. Eur Respir J 20: 30–7

    Article  PubMed  CAS  Google Scholar 

  33. Cano NJ, Pichard C, Roth H et al., and the Clinical Research Group of the Société Francophone de Nutrition Entérale et Parentérale (2004) C-reactive protein and body mass index predict outcome in end-stage respiratory failure. Chest 126: 540–6

    Article  PubMed  Google Scholar 

  34. Schwebel C (1999) Effets de ľhypoxie sur la synthèse des protéines. Thèse de Sciences, Université J. Fourier, Grenoble

    Google Scholar 

  35. Attaix D, Aurousseau E, Combaret L et al. (1998) Ubiquitin-proteasome-dependent proteolysis in skeletal muscle. Reprod Nutr Dev 38: 153–65

    PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag France, Paris

About this chapter

Cite this chapter

Pison, C., Fontaine, E., Leverve, X. (2007). Hypoxie et nutrition. In: Traité de nutrition artificielle de l’adulte. Springer, Paris. https://doi.org/10.1007/978-2-287-33475-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-2-287-33475-7_33

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-287-33474-0

  • Online ISBN: 978-2-287-33475-7

Publish with us

Policies and ethics