Skip to main content

Abstrait

Le squelette représente la charpente de notre organisme et ľensemble du système musculosquelettique assure la résistance mécanique et la mobilité de notre corps. Un autre rôle du squelette est ďêtre le réservoir du calcium et ďautres minéraux de ľorganisme, en particulier du phosphore. Le squelette représentant 99% de la réserve calcique de ľorganisme, il existe intuitivement une relation entre «bonne santé» osseuse et ingestion de calcium. Sur le plan mécanique et physiologique, ľos est donc un organe dynamique qui tient une place majeure dans le métabolisme du calcium qu’il contribue à réguler pour maintenir ľhoméostasie calcique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Fallon M (1994) Morphology and dynamics of bone: nutritional interactions. In: Shils ME, Olson JA, Shike M (eds) Modern Nutrition in Health and Disease 8th edition vol 1. Lea & Febiger, Philadelphia p 883–907

    Google Scholar 

  2. Ampatzoglou A (1993) Étude prospective longitudinale du statut osseux chez les patients en nutrition parentérale à long terme. Thèse Med, Lyon

    Google Scholar 

  3. Frost HM (1983) Analysis of trabecular bone dynamics. In: Recker RR (ed) Bone Histomorphometry Techniques and Interpretation. CRC Press, Boca Raton, p 109–32

    Google Scholar 

  4. Delmas PD (1992) Bases physiopathologiques des ostéporoses. In: Lesourd B, Rapin CH, Sachet P (eds) Ostéoporose. Pour une prévention nutritionnelle du risque? CERIN, Paris, p 5–12

    Google Scholar 

  5. Heaney RP (1992) Nutrition and bone health in an aging population. In: Ostéoporose. Pour une prévention nutritionnelle du risque? Cerin, Paris, p 23–34

    Google Scholar 

  6. Allen LH, Wood RJ (1994) Calcium and phosphorus. In: Shils ME, Olson JA, Shike M (eds) Modern Nutrition in Health and Disease 8th edition vol 1. Lea & Febiger, Philadelphia p 144–55

    Google Scholar 

  7. Royer P, Kemper B (1990) Calcium regulatory hormones. In: Baulieu EE, Kelly PA (eds) Hormones: from molecule to disease. Hermann, Paris, p 637–69

    Google Scholar 

  8. Haussler MR, McCain TA (1977) Basic and clinical concepts related to vitamin D metabolism and action (second of two parts). N Engl J Med 297: 1041–50

    Article  PubMed  CAS  Google Scholar 

  9. Delmas PD, Eastell R, Garnero P et al. (2000) The use of biochemical markers of bone turnover in osteoporosis. Committee of Scientific Advisors of the International Osteoporosis Foundation. Osteoporos Int 11 Suppl 6: S2–17

    Article  PubMed  Google Scholar 

  10. Delmas P, Schlemmer A, Gineyts E et al. (1991) Urinary excretion of pyridinoline crosslinks correlates with bone turnover measured on iliac crest biopsy in patients with vertebral osteoporosis. J Bone Mineral Res 6: 639–44

    CAS  Google Scholar 

  11. Braillon P, Delmas PD (1992) Mesure de la densité minérale osseuse et du contenu minéral osseux par absorptiométrie. Méthodes ďévaluation des ostéoporoses. Sandoz, Bâle

    Google Scholar 

  12. Ott SM, Kilcoyne RF, Chesnut CH 3rd (1987) Ability of four different techniques of measuring bone mass to diagnose vertebral fractures in postmenopausal women. J Bone Miner Res 2: 201–10

    PubMed  CAS  Google Scholar 

  13. Meunier P (1980) Bone biopsy in diagnosis of metabolic bone disease. In: Cohn DV, Talmage RV, Matthews JL (eds) Hormonal control of calcium metabolism: proceedings of the Seventh International Conference on Calcium Regulating Hormones (Seventh Parathyroid Conference), Estes Park, Colorado, USA., September 5–9, 1980, p 109–17

    Google Scholar 

  14. Klein GL, Targoff CM, Ament ME et al. (1980) Bone disease associated with parenteral nutrition. Lancet 2: 1041–4

    Article  PubMed  CAS  Google Scholar 

  15. Shike M, Harrisson JE, Sturtrige WC et al. (1980) Metabolic bone disease in patients receiving long-term parenteral nutrition. Ann Int Med 92: 343–50

    PubMed  CAS  Google Scholar 

  16. Lipkin EW, Ott SM, Chesnut CH 3rd, Chait A (1988) Mineral loss in the parenteral nutrition patients. Am J Clin Nutr 47: 515–23

    PubMed  CAS  Google Scholar 

  17. Vargas JH, Klein GL, Ament ME et al. (1988) Metabolic bone disease of total parenteral nutrition: course after changing from casein to aminoacids in parenteral solutions with reduced aluminum content. Am J Clin Nutr 48: 1070–8

    PubMed  CAS  Google Scholar 

  18. Lipkin EW, Ott SM, Klein GL (1987) Heterogeneity of bone histology in parenteral nutrition patients. Am J Clin Nutr 46: 673–80

    PubMed  CAS  Google Scholar 

  19. Hurley DL, McMahon MM (1990) Long-term parenteral nutrition and metabolic bone disease. Endocrinol Metab Clin North Am 19: 113–31

    PubMed  CAS  Google Scholar 

  20. Buchman AL, Moukarzel A (2000) Metabolic bone disease associated with total parenteral nutrition. Clin Nutr 19: 217–31

    Article  PubMed  CAS  Google Scholar 

  21. De Vernejoul MC, Messing B, Modrowski D et al. (1985) Multifactorial low remodeling bone disease during cyclic parenteral nutrition. J Clin Endocrinol Metab 60: 109–13

    Article  PubMed  Google Scholar 

  22. Pironi L, Morselli Labate AM, Pertkiewicz M et al. (2002) Prevalence of bone disease in patients on home parenteral nutrition. Clin Nutr 21: 289–96

    Article  PubMed  Google Scholar 

  23. Cohen-Solal M, Baudoin C, Joly F et al. (2003) Osteoporosis in patients on long-term home parenteral nutrition. A longitudinal study. J Bone Miner Res 18: 1989–94

    Article  PubMed  CAS  Google Scholar 

  24. Arlot M, Gérard M, Meunier PJ, Delmas P (1992) Présence de dépôts ďaluminium dans ľos de sujets sous nutrition parentérale prolongée. Nutr Clin Metabol 6, 4 Suppl: 41

    Google Scholar 

  25. Klein GL (1995) Aluminum in parenteral solutions revisited-again. Am J Clin Nutr 61: 449–56

    PubMed  CAS  Google Scholar 

  26. Douet C, Accominotti M, Barbieux A (1996) Rôle des sels de calcium dans la contamination aluminique des mélanges de nutrition parentérale. J Pharm Clin 15: 21–26

    CAS  Google Scholar 

  27. Verhage AH, Cheong WK, Allard JP, Jeejeebhoy KN (1995) Harry-M. Vars Research Award. Increase in lumbar spine bone mineral content in patients on long-term parenteral nutrition without vitamin D supplementation. JPEN J Parenter Enteral Nutr 19: 431–6

    PubMed  CAS  Google Scholar 

  28. Seligman JV, Basi SS, Deitel M et al. (1984) Metabolic bone disease in a patient on long-term parenteral nutrition: a case report with review of literature JPEN J Parenter Enteral Nutr 8: 722–7

    PubMed  CAS  Google Scholar 

  29. Larchet M, Garabedian M, Bourdeau A et al. (1991) Calcium metabolism in children during long-term total parenteral nutrition: the influence of calcium, phosphorus, and vitamin D intakes. J Pediatr Gastroenterol Nutr 13: 367–75

    Article  PubMed  CAS  Google Scholar 

  30. Boncompain-Gérard M, Robert D, Fouque D, Hadj-Aissa A (2000) Renal function and urinary excretion of electrolytes in patients receiving cyclic parenteral nutrition. JPEN J Parenter Enteral Nutr 24: 234–9

    PubMed  Google Scholar 

  31. Wood RJ, Sitrin MD, Rosenberg IH (1984) Calciuria in total parenteral nutrition: effects of amino acids and glucose in rats. Am J Clin Nutr 40: 101–6

    PubMed  CAS  Google Scholar 

  32. Chu RC, Barkowski SM, Buhac J (1990) Small bowel resection-associated urinary calcium loss in rats on long-term total parenteral nutrition. JPEN J Parenter Enteral Nutr 14: 64–7

    PubMed  CAS  Google Scholar 

  33. Berkelhammer C, Wood RJ, Sitrin MD (1998) Inorganic phosphorus reduces hypercalciuria during total parenteral nutrition by enhancing renal tubular calcium absorption. JPEN J Parenter Enteral Nutr 22: 142–6

    PubMed  CAS  Google Scholar 

  34. Reedy JS, Kuhlman JE, Voytovich M (1999) Microvascular pulmonary emboli secondary to precipitated crystals in a patient receiving total parenteral nutrition. Chest 115: 892–5

    Article  PubMed  CAS  Google Scholar 

  35. Sutton RA, Wong NLM, Dirk JH (1979) Effects of metabolic acidosis and alcalosis on sodium and calcium transport in the dog kidney. Kidney Int 15: 520–33

    Article  PubMed  CAS  Google Scholar 

  36. Phelps KR, Einhorn TA, Vogorita VJ et al. (1986) Acidosis-induced osteomalacia: metabolic studies and squelettal histomorphometry. Bone 7: 171–9

    Article  PubMed  CAS  Google Scholar 

  37. Cunningham J, Fraher L, Clemens TL et al. (1982) Chronic acidosis with metabolic bone disease. Am J Med 73: 199–204

    Article  PubMed  CAS  Google Scholar 

  38. Karton MA, Rettmer R, Lipkin EW (1989) D-lactate and metabolic bone disease in patients receiving long-term parenteral nutrition. JPEN J Parenter Enteral Nutr 13: 132–5

    PubMed  CAS  Google Scholar 

  39. Berkelhammer CH, Wood RJ, Sitrin MD (1988) Acetate and hypercalciuria during total parenteral nutrition. Am J Clin Nutr 48: 1482–9

    PubMed  CAS  Google Scholar 

  40. Maillard C, Berruyer M, Serre CM et al. (1992) Protein-S, a vitamin K-dependent protein, is a bone matrix component synthesized and secreted by osteoblasts. Endocrinology 130: 1599–604

    Article  PubMed  CAS  Google Scholar 

  41. Griffith GC, Nichols G Jr, Asher JD et al. (1965) Heparin osteomalacia. JAMA 193: 91–4

    PubMed  CAS  Google Scholar 

  42. Douketis JD, Ginsberg JS, Burrows RF et al. (1996) The effects of long-term heparin therapy during pregnancy on bone density. A prospective matched cohort study. Thromb Haemost 75: 254–7

    PubMed  CAS  Google Scholar 

  43. Caverzasio J, Palmer G, Bonjour JP (1998) Fluoride: mode of action. Bone 22: 585–9

    Article  PubMed  CAS  Google Scholar 

  44. Boulétreau PH, Bost M, Fontanges E et al. (2006) Fluoride exposure and bone status in patients with chronic intestinal failure who are receiving home parenteral nutrition. Am J Clin Nutr 83: 1429–37

    PubMed  Google Scholar 

  45. Konig A, Muhlbauer RC, Fleisch H (1988) Tumor necrosis factor alpha and interleukin-1 stimulate bone resorption in vivo as measured by urinary [3H]tetracycline excretion from prelabeled mice. J Bone Miner Res 3: 621–7

    PubMed  CAS  Google Scholar 

  46. Hughes FG, Howells GL (1993) Interleukin-6 inhibits bone formation in vitro. Bone Min 21: 21–8

    CAS  Google Scholar 

  47. Epstein S, Traberg H, Levine G, McClintock R (1986) Bone and mineral status of patients beginning total parenteral nutrition. JPEN J Parenter Enteral Nutr 10: 263–4

    Article  PubMed  CAS  Google Scholar 

  48. Tantin A (2005) Evolution du Statut Osseux de patients pendant plus de 10 ans de nutrition parentérale. Mémoire de DIU de nutrition artificielle, Lyon

    Google Scholar 

  49. Peck W, Gennari C, Raisz L et al. (1984) Corticosteroids and bone. Calcif Tissue Int 36: 4–7

    Article  PubMed  CAS  Google Scholar 

  50. Robinson RJ, Krzywicki T, Almond L et al. (1998) ffect of a low-impact exercise program on bone mineral density in Crohn’s disease: a randomized controlled trial. Gastroenterology 115: 36–41

    Article  PubMed  CAS  Google Scholar 

  51. Spector TD, Brennan P, Harris PA et al. (1992) Do current regimes of hormone replacement therapy protect against subsequent fractures? Osteoporosis Int 2: 219–24

    Article  CAS  Google Scholar 

  52. Kleerekoper M (2005) Prevention of postmenopausal bone loss and treatment of osteoporosis. Semin Reprod Med 23: 141–8

    Article  PubMed  Google Scholar 

  53. Riggs BL, O’Fallon WM, Lane A et al. (1994) Clinical trial of fluoride therapy in postmenopausal osteoporotic women: extended observations and additional analysis. J Bone Miner Res 9: 265–75

    Article  PubMed  CAS  Google Scholar 

  54. Nishikawa RA, Siepler SE, Siepler JK et al. (2003) Intravenous pamidronate improves bone mineral density in home parenteral nutrition patients. Clin Nutr 22: S88

    Article  Google Scholar 

  55. Haderslev KV, Tjellesen L, Sorensen HA et al. (2002) Effect of cyclical intravenous clodronate therapy on bone mineral density, markers of bone turn over in patients receiving home parenteral nutrition. Am J Clin Nutr 76: 482–8

    PubMed  CAS  Google Scholar 

  56. Geusens P, Reid D (2005) Newer drug treatments: their effects on fracture prevention. Best Pract Res Clin Rheumatol 19: 983–9

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag France, Paris

About this chapter

Cite this chapter

Boncompain-Gérard, M., Fontanges, E., Arlot, M. (2007). Os et nutrition parentérale. In: Traité de nutrition artificielle de l’adulte. Springer, Paris. https://doi.org/10.1007/978-2-287-33475-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-2-287-33475-7_30

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-287-33474-0

  • Online ISBN: 978-2-287-33475-7

Publish with us

Policies and ethics