Skip to main content
  • 1407 Accesses

Abstrait

Les principales voies du métabolisme énergétique cérébral sont identiques à celles des autres tissus, mais les spécificités du système nerveux central imposent des conditions particulières à ľutilisation des substrats et peuvent limiter plusieurs étapes métaboliques. Ainsi, la barrière hématoméningée hémato-encéphalique (BHE) isole le compartiment cérébral de la circulation systémique (1). Le transport des substrats à travers la BHE peut se faire par ľintermédiaire de transporteurs spécifiques: le glucose, par exemple, utilise un transporteur de la barrière endothéliale (GLUT1) qui est soumis à des mécanismes ďadaptation selon le niveau de glycémie et qui peut devenir un facteur limitant (2, 3). Ľautre particularité du système nerveux central est ľorganisation spatiale du tissu cérébral avec la nécessité ďune coopération cellulaire, en particulier entre neurones et cellules gliales. Ainsi, ľéquipement enzymatique nécessaire au métabolisme du glycogène ou de neurotransmetteurs comme le glutamate est contenu dans les cellules gliales, et les échanges intercellulaires de substrats sont obligatoires.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Pardridge WM, Oldendorf WH (1977) Transport of metabolic substrates through the blood-brain barrier. J Neuroceem 28: 5–12

    Article  CAS  Google Scholar 

  2. Boyle PJ, Nagy RJ, O’Connor AM et al. (1994) Adaptation in brain glucose uptake following recurrent hypoglycemia. Proc Natl Acad Sci USA 91: 9352–6

    Article  PubMed  CAS  Google Scholar 

  3. Gjedde A, Crone C (1981) Blood-brain glucose transfer: repression in chronic hyperglycemia. Science 214: 456–7

    Article  PubMed  CAS  Google Scholar 

  4. Clarke DD, Sokoloff L (1994) Circulation and energy metabolism of the brain. In: Siegel GJ (ed) Basic neurochemistry: molecular, and medical aspects. Raven Press, New York, p 645–80

    Google Scholar 

  5. Kety SS (1991) The circulation, metabolism, and functional activity of the human brain. Neurochem Res 16: 1073–8

    Article  PubMed  CAS  Google Scholar 

  6. Robertson CS, Cormio M (1995) Cerebral metabolic management. New Horiz 3: 410–22

    PubMed  CAS  Google Scholar 

  7. Sokoloff L (1977) Relation between physiological function and energy metabolism in the central nervous system. J Neurochem 29: 13–26

    Article  PubMed  CAS  Google Scholar 

  8. Lowry OH, Passonneau JV (1964) The relationships between substrates and enzymes of glycolysis in brain. J Biol Chem 239: 31–42

    PubMed  CAS  Google Scholar 

  9. Meyer RA, Sweeney HL, Kushmerick MJ (1984) A simple analysis of the «phosphocreatine shuttle». Am J Physiol 246: C365–77

    PubMed  CAS  Google Scholar 

  10. Hatazawa J, Ito M, Matsuzawa T et al. (1988) Measurement of the ratio of cerebral oxygen consumption to glucose utilization by positron emission tomography: its consistency with the values determined by the Kety-Schmidt method in normal volunteers. J Cereb Blood Flow Metab 8: 426–32

    PubMed  CAS  Google Scholar 

  11. Fox PT, Raichle ME, Mintun MA, Dence C (1988) Nonoxidative glucose consumption during focal physiologic neural activity. Science 241: 462–4

    Article  PubMed  CAS  Google Scholar 

  12. Boyle PJ (1997) Alteration in brain glucose metabolism induced by hypoglycaemia in man. Diabetologia 40 Suppl 2: S69–74

    Article  PubMed  CAS  Google Scholar 

  13. Schurr A, Payne RS, Miller JJ, Rigor BM (1997) Brain lactate, not glucose, fuels the recovery of synaptic function from hypoxia upon reoxygenation: an in vitro study. Brain Res 744: 105–11

    Article  PubMed  CAS  Google Scholar 

  14. Schurr A, West CA, Rigor BM (1988) Lactate-supported synaptic function in the rat hippocampal slice preparation. Science 240: 1326–8

    Article  PubMed  CAS  Google Scholar 

  15. Itoh Y, Esaki T, Shimoji K et al. (2003) Dichloroacetate effects on glucose and lactate oxidation by neurons and astroglia in vitro and on glucose utilization by brain in vivo. Proc Natl Acad Sci USA 100: 4879–84

    Article  PubMed  CAS  Google Scholar 

  16. Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci USA 91: 10625–9

    Article  PubMed  CAS  Google Scholar 

  17. Tsacopoulos M, Magistretti PJ (1996) Metabolic coupling between glia and neurons. J Neurosci 16: 877–85

    PubMed  CAS  Google Scholar 

  18. Hu Y Wilson GS (1997) A temporaty local energy pool coupled to neuronal activity: fluctuations of extracellular lactate levels in rat brain monitored with rapid-response enzyme-based sensor. J Neurochem 69: 1484–90

    Article  PubMed  CAS  Google Scholar 

  19. Pierre K, Pellerin L (2005) Monocarboxylate transporters in the central nervous system: distribution, regulation and function. J Neurochem 94: 1–14

    Article  PubMed  CAS  Google Scholar 

  20. Hernandez MJ, Vannucci RC, Salcedo A, Brennan RW (1980) Cerebral blood flow and metabolism during hypoglycemia in newborn dogs. J Neurochem 35: 622–8

    Article  PubMed  CAS  Google Scholar 

  21. Fernandes J, Berger R, Smit GP (1984) Lactate as a cerebral metabolic fuel for glucose-6-phosphatase deficient children. Pediatr Res 18: 335–9

    Article  PubMed  CAS  Google Scholar 

  22. Maran A, Cranston I, Lomas J et al. (1994) Protection by lactate of cerebral function during hypoglycaemia. Lancet 343: 16–20

    Article  PubMed  CAS  Google Scholar 

  23. Nemoto EM, Hoff JT, Severinghaus JW (1974) Lactate uptake and metabolism by brain during hyperlactatemia and hypoglycemia. Stroke 5: 48–53

    PubMed  CAS  Google Scholar 

  24. Schurr A (2006) Lactate: the ultimate cerebral oxidative energy substrate? J Cereb Blood Flow Metab 26: 142–52

    Article  PubMed  CAS  Google Scholar 

  25. Hawkins RA, Biebuyck JF (1979) Ketone bodies are selectively used by individual brain regions. Science 205: 325–7

    Article  PubMed  CAS  Google Scholar 

  26. Hawkins RA, Mans AM, Davis DW (1986) Regional ketone body utilization by rat brain in starvation and diabetes. Am J Physiol 250: E169–78

    PubMed  CAS  Google Scholar 

  27. Cahill GF, Jr. (1976) Starvation in man. Clin Endocrinol Metab 5: 397–415

    Article  PubMed  CAS  Google Scholar 

  28. Owen OE, Morgan AP, Kemp HG et al. (1967) Brain metabolism during fasting. J Clin Invest 46: 1589–95

    Article  PubMed  CAS  Google Scholar 

  29. Nicholls DG (1994) Proteins, transmitters and synapses. Blackwell Scientific Publications, Oxford

    Google Scholar 

  30. Swanson RA (1992) Physiologic coupling of glial, glycogen metabolism to neuronal activity in brain. Can J Physiol Pharmacol 70 Suppl: S138–44

    PubMed  CAS  Google Scholar 

  31. Goldberg ND, O’Toole AG (1969) The properties of glycogen synthetase and regulation of glycogen biosynthesis in rat brain. J Biol Chem 244: 3053–61

    PubMed  CAS  Google Scholar 

  32. Hudspith MJ (1997) Glutamate: a role in normal brain function, anaesthesia, analgesia and CNS injury. Br J Amaesth 78: 731–47

    CAS  Google Scholar 

  33. Yudkoff M (1997) Brain metabolism of branched-chain amino acids. Glia 21: 92–8

    Article  PubMed  CAS  Google Scholar 

  34. Wurtman RJ (1982) Nutrients that modify brain function. Sci Am 246: 50–9

    Article  PubMed  CAS  Google Scholar 

  35. Conlay LA (1988) Nutrients and brain function. In: Kinney JM, Jeejeebhoy KN, Hill GL, Owen OE (eds) Nutrition and metabolism in patient care, WB Saunders, Philadelphia, p 727–36

    Google Scholar 

  36. Conlay LA, Zeisel SH (1982) Neurotransmitter precursors and brain function. Neurosurgery 10: 524–9

    Article  PubMed  CAS  Google Scholar 

  37. Lieberman HR, Corkin S, Spring BJ et al. (1985) The effects of dietary neurotransmitter precursors on human behavior. Am J Clin Nutr 42: 366–70

    PubMed  CAS  Google Scholar 

  38. Lieberman HR, Corkin S, Spring BJ et al. (1982) Mood, performance and pain sensitivity: changes induced by food constituents. J Psychiatry Res 17: 135–45

    Article  Google Scholar 

  39. Seltzer S, Marcus R, Stoch R (1981) Perspectives in the control of chronic pain by nutritional manipulation. Pain 11: 141–8

    Article  PubMed  CAS  Google Scholar 

  40. Hartmann E (1982) Effects of L-tryptophan on sleepiness and on sleep. J Psychiatr Res 17: 107–13

    Article  PubMed  Google Scholar 

  41. Gelenberg AJ, Wojcik JD, Falk WE et al. (1990) Tyrosine for depression: a double-blind trial. J Affect Disord 19: 125–32

    Article  PubMed  CAS  Google Scholar 

  42. Zeisel SH, Blusztajn JK (1994) Choline and human nutrition. Annu Rev Nutr 14: 269–96

    Article  PubMed  CAS  Google Scholar 

  43. Levy R, Little A, Chuaqui P, Reith M (1983) Early results from double-blind, placebo controlled trial of high dose-phosphatidylcholine in Alzheimer’s disease. Lancet 1: 987–8

    Article  PubMed  CAS  Google Scholar 

  44. Little A, Levy R, Chuaqui-Kidd P, Hand D (1985) A double-blind, placebo controlled trial of high-dose lecithin in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 48: 736–42

    PubMed  CAS  Google Scholar 

  45. Menon DK (2006) Brain ischaemia after traumatic brain injury: lessons from 15O2 positron emission tomography. Curr Opin Crit Care 12: 85–9

    Article  PubMed  Google Scholar 

  46. Payen JF, Francony G, Fauvage B, Le Bas JF (2005) Apport de la spectroscopie RMN à ľévaluation du traumatisme crânien. Ann Fr Anesth Reanim 24: 522–7

    PubMed  Google Scholar 

  47. Cantais E, Boret H, Carre E, Pernod G (2006) Utilisation clinique du monitorage biochemique cérébral par microdialyse: revue de la littérature. Ann Fr Anesth, Reanim 25: 20–8

    Article  CAS  Google Scholar 

  48. Hillered L, Vespa PM Hovda DA (2005) Translational neurochemical research in acute human brain injury: the current status and potential future for cerebral microdialysis. J Neurotrauma 22: 3–41

    Article  PubMed  Google Scholar 

  49. Haitsma IK, Maas AI (2002) Advanced monitoring in the intensive care unit: brain tissue oxygen tension. Curr Opin Crit Care 8: 115–20

    Article  PubMed  Google Scholar 

  50. Stiefel MF, Spiotta A, Gracias VH et al. (2005) Reduced mortality rate in patients with severe traumatic brain injury treated with brain tissue oxygen monitoring. J Neurosurg 103: 805–11

    Article  PubMed  Google Scholar 

  51. Tucker DM, Penland JG, Sandstead HH et al. (1990) Nutrition status and brain function in aging. Am J Clin Nutr 52:93–102

    PubMed  CAS  Google Scholar 

  52. Woods SC, Chavez M, Park CR et al. (1996) The evaluation of insulin as a metabolic signal influencing behavior via the brain. Neurosci Biobehav Rev 20: 139–44

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag France, Paris

About this chapter

Cite this chapter

Sztark, F., Payen, JF. (2007). Métabolisme cérébral. In: Traité de nutrition artificielle de l’adulte. Springer, Paris. https://doi.org/10.1007/978-2-287-33475-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-2-287-33475-7_28

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-287-33474-0

  • Online ISBN: 978-2-287-33475-7

Publish with us

Policies and ethics