Skip to main content
  • 1419 Accesses

Abstrait

Le foie est composé de différents types cellulaires organisés en unités fonctionnelles dotées ďune microcirculation, les lobules. On distingue:

  • −les cellules parenchymateuses (60% des cellules);

  • −les cellules de Kupffer (25–30%). Il s’agit de macrophages résiduels du foie. Ces cellules jouent un rôle important dans la réponse métabolique lors ďinfection ou ďinflammation, en produisant des eicosanoïdes et des cytokines;

  • −les cellules endothéliales (10%), qui jouent un rôle actif dans le transport vers ľhépatocyte de certaines substances (HDL modifiées, glycoprotéines);

  • −les cellules étoilées (anciennement appelées cellules de ITO) (5%) impliquées dans le stockage de vitamine A.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Elia M (1992) Organ and tissue contribution to metabolic rate. In: Energy metabolism. Tissue determinants and cellular corollaries (Kinney J & Tucker HN, eds.), Raven Press, New York, p 61

    Google Scholar 

  2. Elwyn DH, Parikh HC, Shoemaker WC (1968) Amino acid movements between gut, liver and periphery in unanesthized dogs. Am J Physiol 215: 1260–75

    PubMed  CAS  Google Scholar 

  3. Cano N, Leverve XM (1997) Influence of chronic liver disease and chronic renal failure on nutrient metabolism and undernutrition. Nutrition 13: 381–3

    PubMed  CAS  Google Scholar 

  4. Leverve XM, Cano N (1998) La nutrition du candidat à la transplantation hépatique. In: Progrès en Hépato-Gastroentérologie 3, Doin, Paris, p 41

    Google Scholar 

  5. Tiniakos DG, Lee JA, Burt AD (1996) Innervation of the liver: morphology and function. Liver 16: 151–60

    PubMed  CAS  Google Scholar 

  6. Shimazu T (1981) Central nervous system regulation of liver and adipose tissue metabolism. Diabetologia 20 Suppl: 343–56

    Article  PubMed  CAS  Google Scholar 

  7. Dicostanzo CA, Dardevet DP, Neal DW et al. (2006) Role of the hepatic sympathetic nerves in the regulation of net hepatic glucose uptake and the mediation of the portal glucose signal. Am J Physiol Endocrinol Metab 290: E9–E16

    Article  PubMed  CAS  Google Scholar 

  8. Baquet A, Hue L, Meijer AJ et al. (1990) Swelling of rat hepatocytes stimulates glycogen synthesis. J Biol Chem 265: 955–9

    PubMed  CAS  Google Scholar 

  9. Häussinger D, Lang F, Gerok W (1994) Regulation of cell function by the cellular hydration state. Am J Physiol 267 (Endocrinol. Metab. 30): E343–55

    PubMed  Google Scholar 

  10. Hardie DG (2004) The AMP-activated protein kinase pathway—new players upstream and downstream. J Cell Sci 117: 5479–87

    Article  PubMed  CAS  Google Scholar 

  11. Viollet B, Foretz M, Guigas B et al. (2006) Activation of AMP-activated protein kinase in the liver: a new strategy for the management of metabolic hepatic disorders. J Physiol 574: 41–53

    Article  PubMed  CAS  Google Scholar 

  12. Musi N (2006) AMP-activated protein kinase and type 2 diabetes. Curr Med Chem 13: 583–9

    Article  PubMed  CAS  Google Scholar 

  13. Cool B, Zinker B, Chiou W et al. (2006) Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab 3: 403–16

    Article  PubMed  CAS  Google Scholar 

  14. Lebrasseur NK, Kelley M, Tsao TS et al. (2006) Thiazolidinediones can rapidly activate AMP-activated protein kinase in mammalian tissues. Am J Physiol Endocrinol Metab 291: E175–81

    Article  PubMed  CAS  Google Scholar 

  15. Gerich JE (1993) Control of glycaemia. Baillieres Clin Endocrinol Metab 7: 551–86

    Article  PubMed  CAS  Google Scholar 

  16. Gerich JE, Meyer C, Woerle HJ, Stumvoll M (2001) Renal gluconeogenesis: its importance in human glucose homeostasis. Diabetes Care 24: 382–91

    Article  PubMed  CAS  Google Scholar 

  17. Cano N (2002) Bench-to-bedside review: glucose production from the kidney. Crit Care 6: 317–21

    Article  PubMed  Google Scholar 

  18. Cahill GF (1970) Starvation in man. New Engl J Med 282: 668–75

    Article  PubMed  CAS  Google Scholar 

  19. Stalmans W, Bollen M, Mvumbi L (1987) Control of glycogen synthesis in health and disease. Diabetes Metab Rev 3: 127–61

    PubMed  CAS  Google Scholar 

  20. Pilkis S.J, Claus TH (1991) Hepatic gluconeogenesis/glycolysis: regulation and structure/function relationships of substrate cycle enzymes. Annu Rev Nutr 11: 465–515

    Article  PubMed  CAS  Google Scholar 

  21. Jenssen T, Nurjhan N, Consoli A, Gerich JE (1990) Failure of substrate-induced gluconeogenesis to increase overall glucose appearance in normal humans. Demonstration of hepatic auto-regulation without a change in plasma glucose concentration. J Clin Invest 86: 489–97

    PubMed  CAS  Google Scholar 

  22. Paquot N, Schneiter P, Jequier E et al. (1996) Effects of ingested fructose and infused glucagon on endogenous glucose production in obese NIDDM patients, obese non-diabetic subjects, and healthy subjects. Diabetologia 39: 580–6

    PubMed  CAS  Google Scholar 

  23. Winkler B, Rathgeb I, Steele R, Altszuler N (1970) Conversion of glycerol to glucose in the normal dog. Am J Physiol 219: 497–502

    PubMed  CAS  Google Scholar 

  24. Henry CJ, Rivers JP, Payne PR (1988) Protein and energy metabolism in starvation reconsidered. Eur J Clin Nutr 42: 543–49

    PubMed  CAS  Google Scholar 

  25. Owen OE, Tappy L, Mozzoli MA, Smalley KJ (1990) Acute starvation. In: The metabolic and molecular basis of acquired disease (Cohen R D, Lewis B, Alberti K G & Smalley K J, eds.). Bailliere Tindall, London, p 150

    Google Scholar 

  26. Mitrakou A, Kelley D, Veneman T et al. (1990) Contribution of abnormal muscle and liver glucose metabolism to postprandial hyperglycemia in NIDDM. Diabetes 39: 1381–90

    Article  PubMed  CAS  Google Scholar 

  27. Wasserman DH, Cherrington AD (1991) Hepatic fuel metabolism during muscular work: role and regulation. Am J Physiol 260: E811–824

    PubMed  CAS  Google Scholar 

  28. Kinney LM (1995) Metabolic response to starvation, injury and sepsis. In: Artificial nutrition support in clinical practice (Payne-James J, Grimble G, & Silk D B, eds.), Edward Arnold, London, p 1

    Google Scholar 

  29. Foretz M, Ancellin N, Andreelli F et al. (2005) Short-term overexpression of a constitutively active form of AMP-activated protein kinase in the liver leads to mild hypoglycemia and fatty liver. Diabetes 54: 1331–39

    Article  PubMed  CAS  Google Scholar 

  30. Meijer AJ, Lof C, Ramos IC, Verhoeven AJ (1985) Controle of ureogenesis. Eur J Biochem 148: 189–196

    Article  PubMed  CAS  Google Scholar 

  31. Walser M (1980) Determinants of ureagenesis, with particular reference to renal failure. Kidney Int. 17: 709–21

    Article  PubMed  CAS  Google Scholar 

  32. Atkinson DE, Bourke E (1987) Metabolic aspects of the regulation of systemic pH. Am J Physiol 252: F947–56

    PubMed  CAS  Google Scholar 

  33. Jungermann K, Kietzmann T (1996) Zonation of parenchymal and nonparenchymal metabolism in liver. Annu Rev Nutr 16: 179–203

    Article  PubMed  CAS  Google Scholar 

  34. Haussinger D (1986) Regulation of hepatic ammonia metabolism: the intercellular glutamine cycle. Adv Enzyme Regul 25: 159–80

    Article  PubMed  CAS  Google Scholar 

  35. Boon L, Blommaart PJ, Meijer AJ, Lamers WH et al. (1994) Effect of chronic acidosis on hepatic amino acid uptake and gene regulation: implications for control of acid-base balance. Contrib Nephrol 110: 138–43

    PubMed  CAS  Google Scholar 

  36. Mezey E (1978) Liver disease and nutrition. Gastroenterology 74: 770–83

    PubMed  CAS  Google Scholar 

  37. Randle PJ (1985) Alpha-Ketoacid dehydrogenase complexes and respiratory fuel utilisation in diabetes. Diabetologia 28: 479–84

    Article  PubMed  CAS  Google Scholar 

  38. Wahren J, Felig P, Hagenfeld L (1976) Effect of protein ingestion on splanchnic and leg metabolism in normal man and in patients with diabetes mellitus. J Clin Invest 57: 987–99

    PubMed  CAS  Google Scholar 

  39. Garibotto G, Deferrari G, Robaudo C et al. (1993) Effects of a Protein Meal on Blood Amino Acid Profile in Patients with Chronic Renal Failure. Nephron 64: 216–25

    PubMed  CAS  Google Scholar 

  40. Elia M, Folmer P, Schlatmann A et al. (1989) Amino acid metabolism in muscle and in the whole body of man before and after ingestion of a single mixed meal. Am J Clin Nutr 49: 1203–10

    PubMed  CAS  Google Scholar 

  41. Boden G, Tappy L, Jadali F et al. (1990) Role of glucagon in disposal of an amino acid load. Am J Physiol 259: E225–32

    PubMed  CAS  Google Scholar 

  42. Jungas RL, Halperin ML, Brosnan JT (1992) Quantitative analysis of amino acid oxidation and related gluconeogenesis in humans. Physiol Rev 72: 419–48

    PubMed  CAS  Google Scholar 

  43. Tappy L, Acheson K, Normand S et al. (1992) Effects of infused amino acids on glucose production and utilization in healthy human subjects. Am J Physiol 262: E826–33

    PubMed  CAS  Google Scholar 

  44. Felig P (1975) Amino acid metabolism in man. Ann Rev Biochem 44: 933–55

    Article  PubMed  CAS  Google Scholar 

  45. Mortimore GE, Poso AR (1987) Intracellular protein catabolism and its control during nutrient deprivation and supply. Annu Rev Nutr 7: 539–64

    Article  PubMed  CAS  Google Scholar 

  46. Frayn KN (1996) Metabolic regulation. Portland Press, Dorchester

    Google Scholar 

  47. Goldberg IJ (1996) Lipoprotein lipase and lipolysis: central roles in lipoprotein metabolism and atherogenesis. J Lipid Res 37: 693–707

    PubMed  CAS  Google Scholar 

  48. Hellerstein MK, Christiansen M, Kaempfer S et al. (1991) Measurement of de novo hepatic lipogenesis in humans using stable isotopes. J Clin Invest 87: 1841–52

    Article  PubMed  CAS  Google Scholar 

  49. Schwarz JM, Neese RA, Turner S et al. (1995) Short-term alterations in carbohydrate energy intake in humans. Striking, effects on hepatic glucose production, de novo lipogenesis, lipolysis, and whole-body fuel selection. J Clin Invest 96: 2735–43

    PubMed  CAS  Google Scholar 

  50. Hudgins LC, Hellerstein M, Seidman C et al. (1996) Human fatty acid synthesis is stimulated by a eucaloric low fat, high carbohydrate diet. J Clin Invest 97: 2081–91

    PubMed  CAS  Google Scholar 

  51. Cortez-Pinto H, Camilo ME (2004) Non-alcoholic fatty liver disease/non-alcoholic steatohepatitis (NAFLD/NASH): diagnosis and clinical course. Best Pract Res Clin Gastroenterol 18: 1089–104

    Article  PubMed  CAS  Google Scholar 

  52. Eisenberg S, Sehayek E (1995) Remnant particles and their metabolism. Baillieres Clin Endocrinol Metab 9: 39–753

    Article  Google Scholar 

  53. Balasse EO, Fery F (1989) Ketone body production and disposal: effects of fasting, diabetes, and exercise. Diabetes Metab Rev 5: 47–270

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag France, Paris

About this chapter

Cite this chapter

Tappy, L., Cano, N. (2007). Métabolisme du foie. In: Traité de nutrition artificielle de l’adulte. Springer, Paris. https://doi.org/10.1007/978-2-287-33475-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-2-287-33475-7_23

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-287-33474-0

  • Online ISBN: 978-2-287-33475-7

Publish with us

Policies and ethics