Skip to main content
  • 1422 Accesses

Abstrait

Les réactions biochimiques qui caractérisent la vie reposent sur des successions de transferts ďénergie qui tous obéissent aux deux grands principes de la thermodynamique tels qu’ils ont été définis par Sadi Carnot: la conservation de ľénergie dans ľUnivers et ľévolution générale tendant vers le plus grand degré de désordre de la matière (ou entropie). Mais, en fait, la vie représente en quelque sorte une exception car ľobjectif de tout processus biosynthétique vivant est ďaugmenter le degré ďordre de la matière qui le caractérise, que ce soit à ľéchelon moléculaire, cellulaire ou ďorganismes plus complexes. Cette notion ďune opposition fondamentale entre la «Vie» et le second principe de la thermodynamique a conduit à définir la notion de «négentropie» pour exprimer le concept de ľinverse de ľentropie caractéristique de tous les processus biosynthétiques et ďeux seuls; comme ľa dit Schrödinger: «Ce qu’un organisme mange est de ľentropie négative⋯» (1, 2). Les processus biosynthétiques doivent transformer de ľénergie que les organismes vivants puisent dans le milieu extérieur: lumière et matière organique pour les plantes ou matière organique uniquement pour les autres.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Götschel J, Leinfellner W (1994) Erwin Schrödinger’s world view. The role of physics and biology in his philosophical system. In: Gnaiger E, Gellerich F, Wyss M eds. What is controlling life? Innsbruck, Innsbruck University Press p 23

    Google Scholar 

  2. Schrödinger E (1944) What is life? The physical aspect of living cells. Cambridge, Cambridge University Press

    Google Scholar 

  3. De Duwe C (1996) Poussière de vie. Paris, Librairie Arthème Fayard. Le temps des sciences.

    Google Scholar 

  4. La Noue K, Schoolwertt A (1979) Metabolite transport in mitochondria. Ann Rev Biochem 48: 871–922

    Article  Google Scholar 

  5. Lee Y, Lardy H (1965) Influence of thyroid hormones on L-alpha-glycerophosphate deshydrogenases and other deshydrogenases in various organs of the rat. J Biol Chem 240: 1427–36

    PubMed  CAS  Google Scholar 

  6. Boss O, Samec S, Paoloni-Giacobino A et al. (1997) Uncoupling protein-3: a new member of the mitochondrial carrier family with tissue-specific expression. FEBS Lett 408: 39–42

    Article  PubMed  CAS  Google Scholar 

  7. Boyer BB, Kozak LP (1991) The mitochondrial uncoupling protein gene in brown fat: correlation between DNase I hypersensitivity and expression in transgenic mice. Mol Cell Biol 11: 4147–56

    PubMed  CAS  Google Scholar 

  8. Fluery C, Neverova M, Collins S et al. (1997) Uncoupling protein-2: a novel gene linked to obesity and hyperinsulinemia. Nat Genet 15: 269–72

    Article  Google Scholar 

  9. Fumeron F, Durack-Bown I, Betoulle D et al. (1996) Polymorphisms of uncoupling protein (UCP) and beta 3 adrenoreceptor genes in obese people submitted to a low calorie diet. Int J Obes Relat Metab Disord 20: 1051–4

    PubMed  CAS  Google Scholar 

  10. Gong DW, He Y, Karas M Reitman M (1997) Uncoupling protein-3 is a mediator of thermogenesis regulated by thyroid hormone, b3-adrenergic agonists, and leptin. J Biol Chem 272: 24129–32

    Article  PubMed  CAS  Google Scholar 

  11. Fontaine EM, Moussa M, Devin A et al. (1996) Effect of polyunsaturated fatty acids deficiency on oxidative phosphorylation in rat liver mitochondria. Biochem Biophys Acta 1276: 181–7

    Article  PubMed  Google Scholar 

  12. Piquet MA, Fontaine E, Sibille B et al. (1996) Uncoupling effect of polyunsaturated fatty acid deficiency in isolated rat hepatocytes: effect on glycerol metabolism. Biochem J 317: 667–74

    PubMed  CAS  Google Scholar 

  13. Fontaine EM, Devin A, Rigoulet M, Leverve XM (1997) The yield of oxidative phosphorylation is controlled both by force and flux. Biochem Biophys Res Commun 232: 532–5

    Article  PubMed  CAS  Google Scholar 

  14. Leverve XM, Fontaine E, Putod-Paramelle F, Rigoulet M (1994) Decrease in cytosolic ATP/ADP ratio and activation of pyruvate kinase after in vitro addition of almitrine in hepatocytes isolated from fasted rats. Eur J Biochem 224: 967–74

    Article  PubMed  CAS  Google Scholar 

  15. Luvisetto S, Pietrobon D, Azzone G (1987) Uncoupling of oxidative phosphorylation. I. protonophoric effects account only partially for uncoupling. Biochemistry 26: 7332–8

    Article  PubMed  CAS  Google Scholar 

  16. Rigoulet M, Fraisse L, Ouhabi R et al. (1990) Flux-dependent increase in the stoichiometry of charge translocation by mitochondrial ATPase/ATP synthase induced by almitrine. Biochim Biophys Acta 1018: 91–7

    Article  PubMed  CAS  Google Scholar 

  17. Murphy M (1989) Slip and leak in mitochondrial oxidative phosphorylation. Biochim Biophys Acta 977: 123–41

    Article  PubMed  CAS  Google Scholar 

  18. Larrouy D, Laharrague P, Carrera G et al. (1997) Kupffer cells are a dominant site of uncoupling protein 2 expression in rat liver. Biochem Biophys Res Commun 235: 760–4

    Article  PubMed  CAS  Google Scholar 

  19. Nègre-Salvayre A, Hiriz C, Carreira G et al. (1997) A role for uncoupling protein 2 as a regulator of mitochondrial hydrogen peroxide generation. Faseb J 11: 809–15

    PubMed  Google Scholar 

  20. Elia M, Livesey G (1988) Theory and validity of indirect calorimetry during net lipid synthesis. Am J Clin Nutr 47: 591–607

    PubMed  CAS  Google Scholar 

  21. Lehninger A, Nelson D, Cox M (1994) Principes de biochimie. (2e éd) Paris, Flammarion

    Google Scholar 

  22. Dobson G, Yamamoto E, Hochachka P (1986) Phosphofructokinase control in muscle: nature and reversal of pH-dependent ATP inhibition. Am J Physiol 250: R71–6

    PubMed  CAS  Google Scholar 

  23. Clark JF, Kuznetsov AV, Khuchua Z et al. (1994) Creatine kinase function in mitochondria isolated from gravid and non-gravid guinea-pig uteri. FEBS Lett 347: 147–51

    Article  PubMed  CAS  Google Scholar 

  24. Fontaine EM, Keriel C, Lantuejoul S et al. Cytoplasmic cellular structures control permeability of outer mitochondrial membrane for ADP and oxidative phosphorylation in rat liver cells. Biochem Biophys Res Commun 213: 138–46

    Google Scholar 

  25. Saks VA, Tiivel T, Kay L et al. (1996) On the regulation of cellular energetics in health and disease. Mol Cell Biochem 160: 195–208

    Article  PubMed  Google Scholar 

  26. Wendt I, Barclay J (1980) Effects of dantrolene on the energetics of fast-and slow-twitch muscles of the mouse. Am J Physiol 238: C56–61

    PubMed  CAS  Google Scholar 

  27. Hotchkiss RS, Karl IE (1992) Reevaluation of the role of cellular hypoxia and bioenergetic failure in sepsis. JAMA 267: 1503–10

    Article  PubMed  CAS  Google Scholar 

  28. Leverve X (1996) Perturbations métaboliques au cours de ľagression: bases physiopathologiques et concepts thérapeutiques. Nutrition artificielle en réanimation. Paris, Arnette, p 3

    Google Scholar 

  29. Leverve X, Mustafa I, Péronnet F (1998) Pivotal role of lactate in aerobic metabolism. In: Vincent J, ed. Yearbook of intensive care and emergency medicine. Berlin, Springer-Verlag, p 588

    Google Scholar 

  30. Pison CM, Chauvin C, Fontaine E et al. (1995) Mechanism of gluconeogenesis inhibition in rat hepatocytes isolated after in vivo hypoxia. Am J Physiol 268: E965–73

    PubMed  CAS  Google Scholar 

  31. Levraut J, Ciebiera JP, Cheva S et al. (1998) Mild hyperlactatemia in stable septic patient is due to impaired lactate clearance rather than overproduction. Am J Respir Crit Care Med. 157: 1021–6

    PubMed  CAS  Google Scholar 

  32. Levy B, Gibot S, Franck P et al. (2005) Relation between muscle Na+K+ ATPase activity and raised lactate concentrations in septic shock: a prospective study. Lancet 365: 871–5

    Article  PubMed  CAS  Google Scholar 

  33. Brown G (1992) Control of respiration and ATP synthesis in mammalian mitochondria and cells. Biochem J 284: 1–13

    PubMed  CAS  Google Scholar 

  34. Gudbjarnason S, Mathes P, Raven K (1970) Functional compartmentation of ATP and creatine phosphate, in heart muscle. J Mol Cell Cardiol 1: 325–39

    Article  PubMed  CAS  Google Scholar 

  35. Nobes C, Hay W, Brand M (1990) The mechanism of stimulation of respiration by fatty acids in isolated hepatocytes. J Biol Chem 265: 12910–5

    PubMed  CAS  Google Scholar 

  36. Newsholme E, Leech A (1983) Biochemistry for the medical sciences. Chichester, John Wiley

    Google Scholar 

  37. Soboll S, Scholz R (1986) Control of energy metabolism by glucagon and adrenaline in perfused rat liver. FEBS Lett 205: 109–12

    Article  PubMed  CAS  Google Scholar 

  38. Leverve X (1995) Amino acid metabolism and gluconeogenesis. In: Cynober L, ed. Amino acid metabolism and therapy in health and nutritional disease. New York, CRC Press, p 45

    Google Scholar 

  39. Leverve X, Guignier M (1990) Rôle du Lactate dans le Métabolisme Intermédiaire: Intérêt en Rénimation. Réan Soins Intens Méd Urg 6: 491–500

    Google Scholar 

  40. Bracco D, Chioléro R (1995) Mesure de la consommation ďoxygène en réanimation. In: Richard C, Teboul J, eds. Oxygénation tissulaire. Paris, Masson, p 57

    Google Scholar 

  41. Astrand P, Rodhal K (1994) écis de physiologie de ľexercise musculaire. (3e éd) Paris, Masson

    Google Scholar 

  42. Brooks G, Fahey T (1984) Exercise physiology. New York: Wiley, 1984

    Google Scholar 

  43. Astrand P, Hultman E, Juhlin-Danfelt A, Reynolds G (1986) Disposal of lactate during and after strenous exercise in humans. J Appl Physiol 61: 338–43

    PubMed  CAS  Google Scholar 

  44. Bangsbo J, Gollnick P, Graham T, Saltin B (1991) Substrates for muscle glycogen synthesis in recovery from intense exercise in man. J Physiol (London) 434: 423–40

    CAS  Google Scholar 

  45. Bonen A, Homonko D (1994) Effects of exercise and glycogen depletion on glyconeogenesis in muscle. J Appl Physiol 76: 1753–8

    PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag France, Paris

About this chapter

Cite this chapter

Leverve, X., Fontaine, E., Péronnet, F. (2007). Bioénergétique. In: Traité de nutrition artificielle de l’adulte. Springer, Paris. https://doi.org/10.1007/978-2-287-33475-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-2-287-33475-7_2

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-287-33474-0

  • Online ISBN: 978-2-287-33475-7

Publish with us

Policies and ethics