Skip to main content
  • 1412 Accesses

Abstrait

Depuis la fin des années 1970, de nombreux travaux ont progressivement dévoilé la complexité des médiateurs produits par les cellules du système immunitaire et leur rôle probable dans la réponse métabolique à ľagression. Le nombre de ces médiateurs augmente sans cesse:

  • interleukines (IL) 1 à⋯ (29 à ce jour);

  • Tumor Necrosis Factor (TNF) ± et β

  • interférons (IFN) α, β et γ

  • facteurs de croissance: CSF, TGF⋯

  • chémokines: MCP, MIP, RANTES;

  • et puis, peut-ê, des protéines particulières telles que la High Mobility Group box-1 protein (HMGB1) (1, 2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Chen G, Ward MF, Sama AE, Wang H (2004) Extracellular HMGB1 as a proinflammatory cytokine. J Interferon Cytokine Res 24: 329–33

    Article  PubMed  CAS  Google Scholar 

  2. Erlandsson HH, Andersson U (2004) Mini-review: The nuclear protein HMGB1 as a proinflammatory mediator. Eur J Immunol 34: 1503–12

    Article  CAS  Google Scholar 

  3. De Bandt JP (1998) Physiopathologie de la dénutrition. In: Cynober L, Aussel C (eds). Exploration de ľétat nutritionnel. Cachan: Éditions Médicales Internationales, p 1–26

    Google Scholar 

  4. Cohen J (2002) The immunopathogenesis of sepsis. Nature 420: 885–91

    Article  PubMed  CAS  Google Scholar 

  5. Caille V, Bossi P, Grimaldi D, Vieillard-Baro A (2004) Physiopathology of severe sepsis. Presse Med 33: 256–61

    PubMed  Google Scholar 

  6. Annane D, Bellissant E, Cavaillon JM (2005) Septic shock. Lancet 365: 63–78

    Article  PubMed  CAS  Google Scholar 

  7. Cook DN, Pisetsky DS, Schwartz DA (2004) Toll-like receptors in the pathogenesis of human disease. Nat Immunol 5: 975–9

    Article  PubMed  CAS  Google Scholar 

  8. Akira S (2003) Toll-like receptor signalling. J Biol Chem 278: 38105–8

    Article  PubMed  CAS  Google Scholar 

  9. Lopez-Bojorquez LN, Dehesa AZ, Reyes-Teran G, (2004) Molecular mechanisms involved in the pathogenesis of septic shock. Arch Med Res 35: 465–79

    Article  PubMed  CAS  Google Scholar 

  10. Han J, Ulevitch RJ (2005) Limiting inflammatory responses during activation of innate immunity. Nat Immunol 6: 1198–205

    Article  PubMed  CAS  Google Scholar 

  11. von Andrian UH, Mackay CR (2000) T-cell function and migration. Two sides of the same coin. N Engl J Med 343: 1020–34

    Article  Google Scholar 

  12. Luster AD, Alon R, von Andrian UH (2005) Immune cell migration in inflammation: present and future therapeutic targets. Nat Immunol 6: 1182–90

    Article  PubMed  CAS  Google Scholar 

  13. Vincent JL, Angus DC, Artigas A et al. (2003) Basson BR, Jamal HH, Johnson G, III, Bernard GR. Effects of drotrecogin alfa (activated) on organ dysfunction in the PROWESS trial. Crit Care Med 31: 834–40

    Article  PubMed  CAS  Google Scholar 

  14. Abraham E, Laterre PF, Garg R et al. (2005) Drotrecogin alfa (activated) for adults with severe sepsis and a low risk of death. N Engl J Med 353: 1332–41

    Article  PubMed  CAS  Google Scholar 

  15. Serhan CN, Savill J (2005) Resolution of inflammation: the beginning programs the end. Nat Immunol 6: 191–7

    Article  CAS  Google Scholar 

  16. Henson PM (2005) Dampening inflammation. Nat Immunol 6: 1179–81

    Article  PubMed  CAS  Google Scholar 

  17. Hasselgren PO, Fischer JE (1999) Counter-regulatory hormones and mechanisms in amino acid metabolism with special reference to the catabolic response in skeletal muscle. Curr Opin Clin Nutr Metab Care 2: 9–14

    Article  PubMed  CAS  Google Scholar 

  18. Argiles JM, Lopez-Soriano FJ (1998) Catabolic proinflammatory cytokines. Curr Opin Clin Nutr Metab Care 1: 245–51

    Article  PubMed  CAS  Google Scholar 

  19. Langouche L, Vanhorebeek I, Vlasselaers D et al. (2005) Intensive insulin therapy protects the endothelium of critivally ill patients. J Clin Invest 115: 2277–86

    Article  PubMed  CAS  Google Scholar 

  20. Hotchkiss RS, Karl IE (2003) The pathophysiology and treatment of sepsis. N Engl J Med 348: 138–50

    Article  PubMed  CAS  Google Scholar 

  21. Carrol ED, Thomson AP, Jones AP et al. (2005) A predominantly anti-inflammatory cytokine profile is associated with disease severity in meningococcal sepsis. Intensive Care Med 31: 1415–9

    Article  PubMed  Google Scholar 

  22. Ulloa L, Tracey KJ (2005) The “cytokine profile”: a code for sepsis. Trends Mod Med 11: 56–63

    Article  CAS  Google Scholar 

  23. Febbraio MA, Pedersen BK (2002) Muscle-derived interleukin-6: mechanisms for activation and possible biological roles. FASEB J 16: 1335–47

    Article  PubMed  CAS  Google Scholar 

  24. Steinacker JM, Lormes W, Reissnecker S, Liu Y (2004) New espects of the hormone and cytokine response to training. Eur J Appl Physiol 91: 382–91

    Article  PubMed  CAS  Google Scholar 

  25. Holmes CL, Russell JA, Walley KR (2003) Genetic polymorphisms in sepsis and septic shock: role in prognosis and potential for therapy. Chest 124: 1103–15

    Article  PubMed  CAS  Google Scholar 

  26. Sorensen TI, Nielsen GG, Andersen PK, Teasdale TW (1988) Genetic and environmental influences on premature death in adult adoptees. N Engl J Med 318: 727–32.

    Article  PubMed  CAS  Google Scholar 

  27. Tabrizi AR, Zehnbauer BA, Freeman BD, Buchman TG (2001) Genetic markers in sepsis. J Am Coll Surg 192: 106–17

    Article  PubMed  CAS  Google Scholar 

  28. Wilson AG, Symons JA, McDowell TL et al. (1997) Effects of a polymorphism in the human tumor necrosis factor alpha promoter on transcriptional activation. Proc Natl Acad Sci USA 94: 3195–99

    Article  PubMed  CAS  Google Scholar 

  29. O’Keefe GE, Hybki DL, Munford RS (2002) The G→A single nucleotide polymorphism at the −308 position in the tumor necrosis factor-alpha promoter increases the risk for severe sepsis after trauma. J Trauma 52: 817–25

    Article  Google Scholar 

  30. Mira JP, Cariou A, Grall F et al. (1999) Association of TNF2, a TNF-alpha promoter polymorphism, with septic shock susceptibility and mortality: a multicenter study. JAMA 282: 561–8

    Article  PubMed  CAS  Google Scholar 

  31. Tang GJ, Huang SL, Yien HW et al. (2000) Tumor necrosis factor gene polymorphism and septic shock in surgical infection. Crit Care Med 28: 733–2736

    Google Scholar 

  32. Majetschak M, Flohe S, Obertacke U et al. (1999) Relation of a TNF gene polymorphism to severe sepsis in trauma patients. Ann Surg 230: 207–14

    Article  PubMed  CAS  Google Scholar 

  33. Gallagher PM, Lowe G, Fitzgerald T et al. (2003) Association of IL-10 polymorphism with severity of illness in community acquired pneumonia. Thorax 58: 154–6

    Article  PubMed  CAS  Google Scholar 

  34. Waterer GW, Quasney MW, Cantor RM, Wunderink RG (2001) Septic shock and respiratory failure in community-acquired pneumonia have different TNF polymorphism associations. Am J Respir Crit Care Med 163: 1599–1604

    PubMed  CAS  Google Scholar 

  35. Kahlke V, Schafmayer C, Schniewind B et al. (2004) Are postoperative complications genetically determined by TNF-beta NcoI gene polymorphism? Surgery 135: 365–73

    Article  PubMed  Google Scholar 

  36. Stuber F, Petersen M, Bokelmann F, Schade U (1996) A genomic polymorphism within the tumor necrosis factor locus influences plasma tumor necrosis factor-alpha concentrations and outcome of patients with severe sepsis. Crit Care Med 24: 381–4

    Article  PubMed  CAS  Google Scholar 

  37. Tomasdottir H, Hjartarson H, Ricksten A et al. (2003) Tumor necrosis factor gene polymorphism is associated with enhanced systemic inflammatory response and increased cardiopulmonary morbidity after cardiac surgery. Anesth Analg 97: 944–9

    Article  PubMed  CAS  Google Scholar 

  38. Burgner D, Xu W, Rockett K et al. (1998) Inducible nitric oxide synthase polymorphism and fatal cerebral malaria. Lancet 352: 1193–4

    Article  PubMed  CAS  Google Scholar 

  39. Kun JF, Mordmuller B, Lell B et al. (1998) Polymorphism in promoter region of inducible nitric oxide synthase gene and protection against malaria. Lancet 351: 265–6

    Article  PubMed  CAS  Google Scholar 

  40. Kun JF, Mordmuller B, Perkins DJ et al. (2001) Nitric oxide synthase 2 (Lambarene) (G-954C), increased nitric oxide production, and protection against malaria. J Infect Dis 184: 330–6

    Article  PubMed  CAS  Google Scholar 

  41. Hobbs MR, Udhayakumar V, Levesque MC et al. (2002) A new NOS2 promoter polymorphism associated with increased nitric oxide production and protection from severe malaria in Tanzanian and Kenyan children. Lancet 360: 1468–75

    Article  PubMed  CAS  Google Scholar 

  42. Johannesen J, Pie A, Pociot F et al. (2001) Linkage of the human inducible nitric oxide synthase gene to type 1 diabetes. J Clin Endocrinol Metab 86: 2792–6

    Article  PubMed  CAS  Google Scholar 

  43. Warpeha KM, Xu W, Liu L et al. (1999) Genotyping and functional analysis of a polymorphic (CCTTT)(n) repeat of NOS2A in diabetic retinopathy. FASEB J 13: 1825–32

    PubMed  CAS  Google Scholar 

  44. Levecque C, Elbaz A, Clavel J et al. (2003) Association between Parkinson’s disease and polymorphisms in the nNOS and iNOS genes in a community-based case-control study, pp 79–86

    Google Scholar 

  45. Lazarus M, Hajeer AH, Turner D et al. (1997) Genetic variation in the interleukin 10 gene promoter and systemic lupus erythematosus. J Rheumatol 24: 2314–17

    PubMed  CAS  Google Scholar 

  46. Howell WM, Calder, PC, Grimble, RF (2002) Gene polymorphisms, inflammatory diseases and cancer. Proc Nutr Soc 61: 447–56

    Article  PubMed  CAS  Google Scholar 

  47. Stanilova SA, Miteva LD, Karakolev ZT, Stefanov CS (2006) Interleukin-10-1082 promoter polymorphism in association with cytokine production and sepsis susceptibility. Intensive Care Med 32: 260–6

    Article  PubMed  CAS  Google Scholar 

  48. Lowe PR, Galley HF, bdel-Fattah A, Webster NR (2003) Influence of interleukin-10 polymorphisms on interleukin-10 expression and survival in critically ill patients. Crit Care Med 31: 34–8

    Article  PubMed  CAS  Google Scholar 

  49. Lorenz E, Mira JP, Frees KL, Schwartz DA (2002) Relevance of mutations in the TLR4 receptor in patients with gram-negative septic shock. Arch Intern Med 162: 1028–32

    Article  PubMed  CAS  Google Scholar 

  50. Saleh M, Vaillancourt JP, Graham RK et al. (2004) Differential modulation of endotoxin responsiveness by human caspase-12 polymorphisms. Nature 429: 75–9

    Article  PubMed  CAS  Google Scholar 

  51. Grimble RF, Howell WM, O’Reilly G et al. (2002) The ability of fish oil to suppress tumor necrosis factor alpha production by peripheral blood mononuclear cells in healthy men is associated with polymorphisms in genes that influence tumor necrosis factor alpha production. Am J Clin Nutr 76: 454–9

    PubMed  CAS  Google Scholar 

  52. Guzik TJ, West NE, Black E et al. (2000) Functional effect of the C242T polymorphism in the NAD(P)H oxidase p22phox gene on vascular superoxide production in atherosclerosis. Circulation 102: 1744–7

    PubMed  CAS  Google Scholar 

  53. Wyche KE, Wang SS, Griendling KK et al. (2004) C242T CYBA polymorphism of the NADPH oxidase is associated with reduced respiratory burst in human neutrophils. Hypertension 43: 1246–51

    Article  PubMed  CAS  Google Scholar 

  54. Wargovich MJ, Cunningham JE (2003) Diet, individual responsiveness and cancer prevention. J Nutr 133: 2400S–2403S

    PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag France, Paris

About this chapter

Cite this chapter

de Bandt, JP. (2007). Cytokines. In: Traité de nutrition artificielle de l’adulte. Springer, Paris. https://doi.org/10.1007/978-2-287-33475-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-2-287-33475-7_17

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-287-33474-0

  • Online ISBN: 978-2-287-33475-7

Publish with us

Policies and ethics