Skip to main content
  • 1413 Accesses

Abstrait

Bien que le terme «facteurs de croissance» ait été utilisé au départ pour désigner des substances qui stimulent la division cellulaire, il recouvre actuellement des protéines sécrétées qui exercent divers effets sur la croissance, le métabolisme et la différenciation cellulaire, mais également sur la croissance et le développement des organismes (1). Contrairement aux hormones qui sont produites par les glandes endocrines, les facteurs de croissance sont produits par de nombreux tissus de ľorganisme. Alors que les hormones sont sécrétées dans le sang pour agir à distance de leur site de synthèse, les factuers de croissance agissent souvent dans leur environnement local. Enfin, si les hormones sont de différentes natures chimiques, les facteurs de croissance sont toujours de nature peptidique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Raff MC (1996) Size control: the regulation of cell numbers in animal development. Cell 86: 173–5

    Article  PubMed  CAS  Google Scholar 

  2. Sporn MB, Roberts AB (1988) Peptide growth factors are multifunctional. Nature 332: 217–9

    Article  PubMed  CAS  Google Scholar 

  3. Manhes C, Goffin V, Kelly PA, Touraine P (2005) Autocrine prolactin as a promotor of mammary tumour growth. J Dairy Res 72 Spec No: 58–65

    Google Scholar 

  4. Schlessinger J (2000) Cell signaling by receptor tyrosine kinases. Cell 103: 211–225

    Article  PubMed  CAS  Google Scholar 

  5. Krause DS, Van Etten RA (2005) Tyrosine kinases as targets for cancer therapy. N Engl J Med 353: 172–87

    Article  PubMed  CAS  Google Scholar 

  6. Heldin CH (1995) Dimerization of cell surface receptors in signal transduction. Cell 80: 213–3

    Article  PubMed  CAS  Google Scholar 

  7. Sasaoka T, Rose DW, Jhun BH, et al. (1994) Evidence for a functional role of Shc proteins in mitogenic signaling induced by insulin, insulin-like growth factor-1, and epidermal growth factor. J Biol Chem 269: 13689–94

    PubMed  CAS  Google Scholar 

  8. Schlessinger J (2003) Signal transduction. Autoinhibition control. Science 300: 750–2

    Article  PubMed  CAS  Google Scholar 

  9. Yoon S, Seger R (2006) The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors 24: 21–44

    Article  PubMed  CAS  Google Scholar 

  10. Pearson G, Robinson F, Beers GT et al. (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocrine Reviews 22: 153–83

    Article  PubMed  CAS  Google Scholar 

  11. Gavi S, Shumay E, Wang HY, Malbon CC (2006) G-protein-coupled receptors and tyrosine kinases: crossroads in cell signaling and regulation. Trends Endocrinol Metab 17: 48–54

    Article  PubMed  CAS  Google Scholar 

  12. Park JY, Su YQ, Ariga M et al. (2004) EGF-like growth factors as mediators of LH action in the ovulatory follicle. Science 303: 682–4

    Article  PubMed  CAS  Google Scholar 

  13. Hsieh M, Conti M (2005) G-protein-coupled receptor signaling and the EGF network in endocrine systems. Trends Endocrinol Metab 16: 320–6

    Article  PubMed  CAS  Google Scholar 

  14. Staka CM, Nicholson RI, Gee JM (2005) Acquired resistance to oestrogen deprivation: role for growth factor signalling kinases oestrogen receptor cross-talk revealed in new MCF-7X model. Endocr Relat Cancer 12 Suppl 1: S85–97

    Article  PubMed  CAS  Google Scholar 

  15. Yamauchi H, Stearns V, Hayes DF (2001) When is a tumor marker ready for prime time? A case study of c-erbB-2 as a predictive factor in breast cancer. J Clin Oncol 19: 2334–56

    PubMed  CAS  Google Scholar 

  16. Shou J, Massarweh S, Osborne CK et al. (2004) Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. J Natl Cancer Inst 96: 926–35

    Article  PubMed  CAS  Google Scholar 

  17. Sjogren S, Inganas M, Lindgren A et al. (1998) Prognostic and predictive value of c-erbB-2 overexpression in primary breast cancer, alone and in combination with other prognostic markers. J Clin Oncol 16: 462–9

    PubMed  CAS  Google Scholar 

  18. Xia W, Gerard CM, Liu L et al. (2005) Combining lapatinib (GW572016), a small molecule inhibitor of ErbB1 and ErbB2 tyrosine kinases, with therapeutic anti-ErbB2 antibodies enhances apoptosis of ErbB2-overexpressing breast cancer cells. Oncogene 24: 6213–21

    Article  PubMed  CAS  Google Scholar 

  19. Piccart-Gebhart MJ, Procter M, Leyland-Jones B et al. (2005) Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med 353: 1659–72

    Article  PubMed  CAS  Google Scholar 

  20. Bottcher RT, Niehrs C (2005) Fibroblast growth factor signaling during early vertebrate development. Endocrine Reviews 26: 63–77

    Article  PubMed  CAS  Google Scholar 

  21. Wilkie AO (2005) Bad bones, absent smell, selfish testes: the pleiotropic consequences of human FGF receptor mutations. Cytokine Growth Factor Rev 16: 187–203

    Article  PubMed  CAS  Google Scholar 

  22. Shiang R, thompson LM, Zhu YZ et al. (1994) Mutations in the transmembrane domain of FGFR3 cause the most common genetic form of dwarfism, achondroplasia. Cell 78: 335–42

    Article  PubMed  CAS  Google Scholar 

  23. Vajo Z, Francomano CA, Wilkin DJ (2000) The molecular and genetic basis of fibroblast growth factor receptor 3 disorders: the achondroplasia family of skeletal dysplasias, Muenke craniosynostosis, and Crouzon syndrome with acanthosis nigricans. Endocrine Reviews 21: 23–39

    Article  PubMed  CAS  Google Scholar 

  24. Jabs EW, Li X, Scott AF et al. (1994) Jackson-Weiss and Crouzon syndromes are allelic with mutations in fibroblast growth factor receptor 2. Nat Genet 8: 275–9

    Article  PubMed  CAS  Google Scholar 

  25. Dode C, Levilliers J, Dupont JM et al. (2003) Loss-of-function mutations in FGFR1 cause autosomal dominant Kallmann syndrome. Nat Genet 33: 463–5

    Article  PubMed  CAS  Google Scholar 

  26. Berndt TJ, Schiavi S, Kumar R (2005) “Phosphatonins” and the regulation of phosphorus homeostasis. Am J Physiol Renal Physiol 289: F1170–F82

    Article  PubMed  CAS  Google Scholar 

  27. Riminucci M, Collins MT, Fedarko NS et al. (2003) FGF-23 in fibrous dysplasia of bone and its relationship to renal phosphate wasting. J Clin Invest 112: 683–92

    Article  PubMed  CAS  Google Scholar 

  28. Finch PW, Rubin JS (2004) Keratinocyte growth factor/fibroblast growth factor 7, a homeostatic factor with therapeutic potential for epithelial protection and repair. Adv Cancer Res 91: 69–136

    PubMed  CAS  Google Scholar 

  29. Grines C, Rubanyi GM, Kleiman NS et al. (2003) Angiogenic gene therapy with adenovirus 5 fibroblast growth factor-4 (Ad5FGF-4): a new option for the treatment of coronary artery disease. Am J Cardiol 92: 24N–31N

    Article  PubMed  CAS  Google Scholar 

  30. Cohen S (1960) Purification of a nerve-growth promoting protein from the mouse salivary gland and its neuro-cytotoxic antiserum. Proc Natl Acad Sci USA 46: 302–11

    Article  PubMed  CAS  Google Scholar 

  31. Levi-Montalcini R, Booker B (1960) Destruction of the sympathetic ganglia in mammals by an antiserum to a nerve-growth protein. Proc Natl Acad Sci USA 46: 384–91

    Article  PubMed  CAS  Google Scholar 

  32. Lu B, Pang PT, Woo NH (2005) The yin and yang of neutrotrophin action. Nature Reviews Neuroscience 6: 603–14

    Article  PubMed  CAS  Google Scholar 

  33. Hofstra RM, Landsvater RM, Ceccherini I et al. (1994) A mutation in the RET proto-oncogene associated with multiple endocrine neoplasia type 2B and sporadic medullary thyroid carcinoma. Nature 367: 375–6

    Article  PubMed  CAS  Google Scholar 

  34. Durbec P, Marcos-Gutierrez CV, Kilkenny C et al. (1996) GDNF signalling through the Ret receptor tyrosine kinase. Nature 381: 789–93

    Article  PubMed  CAS  Google Scholar 

  35. Eng C, Mulligan LM (1997) Mutations of the RET proto-oncogene in the multiple endocrine neoplasia type 2 syndromes, related sporadic tumours, and hirschsprung disease. Hum Mutat 9: 97–109

    Article  PubMed  CAS  Google Scholar 

  36. Edery P, Lyonnet S, Mulligan LM et al. (1994) Mutations of the RET proto-oncogene in Hirschsprung’s disease. Nature 367: 378–80

    Article  PubMed  CAS  Google Scholar 

  37. Thoenen H, Sendtner M (2002) Neurotrophins: from enthusiastic expectations through sobering experiences to rational therapeutic approaches. Nature Neuroscience 5 Suppl: 1046–50

    Article  PubMed  CAS  Google Scholar 

  38. Ferrara N (2004) Vascular endothelial growth factor: basic science and clinical progress. Endocrine Reviews 25: 581–611

    Article  PubMed  CAS  Google Scholar 

  39. Gerber HP, Kowalski J, Sherman D et al. (2000) Complete inhibition of rhabdomyosarcoma xenograft growth and neovascularization requires blockade of both tumor and host vascular endothelial growth factor. Cancer Res 60: 6253–8

    PubMed  CAS  Google Scholar 

  40. Hurwitz H, Fehrenbacker L, Novotny W et al. (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350: 2335–42

    Article  PubMed  CAS  Google Scholar 

  41. Avery RL, Pieramici DJ, Rabena MD et al. (2006) Intravitreal bevacizumab (Avastin) for neovascular age-related mascular degeneration. Ophthalmology 113: 63–372

    Article  Google Scholar 

  42. Daughaday WH, Rotwein P (1989) Insulin-like growth factors I and II. Peptide, messenger ribonucleic acid and gene structures, serum, and tissue concentrations. Endocrine Reviews 10: 68–91

    Article  PubMed  CAS  Google Scholar 

  43. Davey HW, Xie T, McLachlan MJ et al. (2001) STAT5b is required for GH-induced liver IGF-I gene expression. Endocrinology 142: 3836–41

    Article  PubMed  CAS  Google Scholar 

  44. Yang SY, Goldspink G (2002) Different roles of the IGF-I Ec peptide (MGF) and mature IGF-I in myoblast proliferation and differentiation. FEBS Lett 522: 156–60

    Article  PubMed  CAS  Google Scholar 

  45. De Meyts P, Whittaker J (2002) Structural biology of insulin and IGF1 receptors: implications for drug design. Nat Rev Drug Discov 1: 769–83

    Article  PubMed  CAS  Google Scholar 

  46. Hwa V, Oh Y, Rosenfeld RG (1999) The insulin-like growth factor-binding protein (IGFBP) superfamily. Endocrine Reviews 20: 761–87

    Article  PubMed  CAS  Google Scholar 

  47. Jones JI, Clemmons DR (1995) Insulin-like growth factors and their binding proteins: Biological actions. Endocrine Reviews 16: 3–34

    Article  PubMed  CAS  Google Scholar 

  48. Firth SM, Baxter RC (2002) Cellular actions of the insulin-like growth factor binding proteins. Endocrine Reviews 23: 824–54

    Article  PubMed  CAS  Google Scholar 

  49. Salmon WD, Daughaday WH (1957) A hormonally-controlled serum factor which stimulates sulfate incorporation by cartilage in vitro. J Lab Clin Med 49: 825–36

    PubMed  CAS  Google Scholar 

  50. Schoenle E, Zapf J, Humbel RE, Froesch ER (1982) Insulin-like growth factor-I stimulates growth in hypophysectomized rats. Nature 296: 252–3

    Article  PubMed  CAS  Google Scholar 

  51. Liu JL, LeRoith D (1999) Insulin-like growth factor I is essential for postnatal growth in response to growth hormone. Endocrinology 140: 5178–84

    Article  PubMed  CAS  Google Scholar 

  52. Sjogren K, Liu JL, Blad K et al. (1999) Liver-derived insulin-like growth factor I (IGF-I) is the principal source of IGF-I in blood but is not required for postnatal body growth in mice. Proc Natl Acad Sci USA 96: 7088–92

    Article  PubMed  CAS  Google Scholar 

  53. Ueki I, Ooi GT, Tremblay ML et al. (2000) Inactivation of the acid labile subunit gene in mice results in mild retardation of postnatal growth despite profound disruptions in the circulating insulin-like growth factor system. Proc Natl Acad Sci USA 97: 6868–73

    Article  PubMed  CAS  Google Scholar 

  54. Simpson HL, Jackson NC, Shojaee-Moradie F et al. (2004) Insulin-like growth factor I has a direct effect on glucose and protein metabolism, but no effect on lipid metabolism in type I diabetes. J Clin Endocrinol Metab 89: 425–32

    Article  PubMed  CAS  Google Scholar 

  55. LeRoith D, Roberts CT Jr. (2003) The insulin-like growth factor system and cancer. Cancer Letters 195: 127–37

    PubMed  CAS  Google Scholar 

  56. Valentinis B, Baserga R (2001) IGF-I receptor signalling in transformation and differentiation. Mol Pathol 54: 133–7

    Article  PubMed  CAS  Google Scholar 

  57. Yakar S, LeRoith D, Brodt P (2005) The role of the growth hormone/insulin-like growth factor axis in tumor growth and progression: Lessons from animal models. Cytokine Growth Factor Rev 16: 407–20

    Article  PubMed  CAS  Google Scholar 

  58. Chan JM, Stampfer MJ, Giovannucci E et al. (1998) Plasma insulin-like growth factor-I and prostate cancer risk: a prospective study. Science 279: 563–6

    Article  PubMed  CAS  Google Scholar 

  59. Renehan AG, Zwahlen M, Minder C et al. (2004) Insulin-like growth factor (IGF)-I, IGF binding protein-3, and cancer risk: systematic review and meta-regression analysis. Lancet 363: 1346–53

    Article  PubMed  CAS  Google Scholar 

  60. Khandwala HM, McCutcheon IE, Flyvbjerg A, Friend KE (2000) The effects of insulin-like growth factors on tumorigenesis and neoplastic growth. Endocrine Reviews 21: 215–44

    Article  PubMed  CAS  Google Scholar 

  61. Frystyk J, Skjaerbaek C, Zapf J, Orskov H (1998) Increased levels of circulating free insulin-like growth factors in patients with non-islet cell tumour hypoglycaemia. Diabetologia 41: 589–94

    Article  PubMed  CAS  Google Scholar 

  62. Miraki-Moud F, Grossman AB, Besser M et al. (2005) A rapid method for analyzing serum pro-insulin-like growth factor-II in patients with non-islet cell tumor hypoglycemia. J Clin Endocrinol Metab 90: 3819–23

    Article  PubMed  CAS  Google Scholar 

  63. Holzenberger M, Dupont J, Ducos B et al. (2003) IGF-I receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421: 182–7

    Article  PubMed  CAS  Google Scholar 

  64. Barbieri M, Bonafe M, Franceschi C, Paolisso G (2003) Insulin/IGF-I-signaling pathway: an evolutionarily conserved mechanism of longevity from yeast to humans. Am J Physiol Endocrinol Metab 285: E1064–71

    PubMed  CAS  Google Scholar 

  65. Bonafe M, Barbieri M, Marchegiani F et al. (2003) Polymorphic variants of insulin-like growth factor I (IGF-I) receptor and phosphoinositide 3-kinase genes affect IGF-I plasma levels and human longevity: cues for an evolutionarily conserved mechanism of life span control. J Clin Endocrinol Metab 88: 3299–304

    Article  PubMed  CAS  Google Scholar 

  66. Clemmons DR (2005) Quantitative measurement of IGF-I and its use in diagnosing and monitoring treatment of disorders of growth hormone secretion. Endocr Dev 9: 55–65

    PubMed  CAS  Google Scholar 

  67. Rigamonti AE, Cella SG, Marazzi N et al. (2005) Growth hormone abuse: methods of detection. Trends Endocrinol Metab 16: 160–6

    Article  PubMed  CAS  Google Scholar 

  68. Hoffman DM, O’Sullivan AJ, Baxter RC, Ho KKY (1994) Diagnosis of growth hormone deficiency in adults. Lancet 343: 1064–8

    Article  PubMed  CAS  Google Scholar 

  69. Thissen JP, Underwood LE, Ketelslegers JM (1999) Regulation of insulin-like growth factor-I in starvation and injury. Nutr Rev 57: 167–76

    Article  PubMed  CAS  Google Scholar 

  70. Thissen JP, Ketelslegers JM, Underwood LE (1994) Nutritional regulation of the Insulin-like growth factors. Endocrine Reviews 15: 80–101

    Article  PubMed  CAS  Google Scholar 

  71. Caregaro L, Favaro A, Santonastaso P et al. (2001) Insulin-like growth factor 1 (IGF-1), a nutritional marker in patients with eating disorders. Clinical Nutrition 20: 251–7

    Article  PubMed  CAS  Google Scholar 

  72. Harris TB, Kiel D, Roubenoff R et al. (1997) Association of insulin-like growth factor-I with body composition, weight history, and past health behaviors in the very old: the Framingham Heart Study. J Am Geriatr Soc 45: 133–9

    PubMed  CAS  Google Scholar 

  73. Laron Z (2004) Laron syndrome (primary growth hormone resistance or insensitivity): the personal experience 1958–2003. J Clin Endocrinol Metab 89: 1031–44

    Article  PubMed  CAS  Google Scholar 

  74. Backeljauw PF, Underwood LE (1996) Prolonged treatment with recombinant insulin-like growth factor-I in children with growth hormone insensitivity syndrome-1 clinical research center study. GHIS Collaborative Group. J Clin Endocrinol Metab 81: 3312–7

    Article  PubMed  CAS  Google Scholar 

  75. Wilczak N, De Keyser J (2005) Insulin-like growth factor system in amyotrophic lateral sclerosis. Endocr Dev 9: 160–9

    Article  PubMed  CAS  Google Scholar 

  76. Carroll PV, Umpleby M, Ward GS et al. (1997) rhIGF-I administration reduces insulin requirements, decreases growth hormone secretion, and improves the lipid profile in adults with IDDM. Diabetes 46: 1453–8

    Article  PubMed  CAS  Google Scholar 

  77. Yakar S, Setser J, Zhao H et al. (2004) Inhibition of growth hormone action improves insulin sensitivity in liver IGF-I-deficient mice. J Clin Invest 113: 96–105

    Article  PubMed  CAS  Google Scholar 

  78. Cusi K, DeFronzo R (2000) Recombinant human insulin-like growth factor I treatment for I week improves metabolic control in type 2 diabetes by ameliorating hepatic and muscle insulin resistance. J Clin Endocrinol Metab 85: 3077–84

    Article  PubMed  CAS  Google Scholar 

  79. Quin JD, Fisher BM, Paterson KR et al. (1990) Acute response to recombinant insulin-like growth factor I in a patient with Mendenhall’s syndrome. N Engl J Med 323: 1425–6

    Article  PubMed  CAS  Google Scholar 

  80. Ranke MB (2005) Insulin-like growth factor-I treatment of growth disorders, diabetes mellitus and insulin resistance. Trends Endocrinol Metab 16: 190–197

    Article  PubMed  CAS  Google Scholar 

  81. Jabri N, Schalch DS, Schwartz SL et al. (1994) Adverse effects of recombinant human insulin-like growth factor I in obese insulin-resistant type II diabetic patients. Diabetes 43: 369–74

    Article  PubMed  CAS  Google Scholar 

  82. Schrijvers BF, De Vriese AS, Flyvbjerg A (2004) From hyperglycemia to diabetic kidney disease: the role of metabolic, hemodynamic, intracellular factors and growth factors/cytokines. Endocrine Reviews 25: 971–1010

    Article  PubMed  CAS  Google Scholar 

  83. Fryburg DA, Jahn LA, Hill SA et al. (1995) Insulin and insulin-like growth factor-I enhance human skeletal muscle protein anabolism during hyperaminoacidemia by different mechanisms. J Clin Invest 96: 1722–9

    PubMed  CAS  Google Scholar 

  84. Clemmons DR, Smith-Banks A, Underwood LE (1992) Reversal of diet-induced catabolism by infusion of recombinant insulin-like growth factor-I in humans. J Clin Endocrinol Metab 75: 234–8

    Article  PubMed  CAS  Google Scholar 

  85. Mauras N, Beaufrere B (1995) Recombinant human insulin-like growth factor-I enhances whole body protein anabolism and significantly diminishes the protein catabolic effects of prednisone in humans without a diabetogenic effect. J Clin Endocrinol Metab 80: 869–74

    Article  PubMed  CAS  Google Scholar 

  86. Hayes VY, Urban RJ, Jiang J et al. (2001) Recombinant human growth hormone and recombinant human insulin-like growth factor I diminish the catabolic effects of hypogonadism in man: metabolic and molecular effects. J Clin Endocrinol Metab 86: 2211–19

    Article  PubMed  CAS  Google Scholar 

  87. Schakman O, Gilson H, de Coninck V et al. (2005) Insulin-like growth factor-I gene transfer by electroporation prevents skeletal muscle atrophy in glucocorticoid-treated rats. Endocrinology 146: 1789–97

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag France, Paris

About this chapter

Cite this chapter

Thissen, JP. (2007). Facteurs de croissance. In: Traité de nutrition artificielle de l’adulte. Springer, Paris. https://doi.org/10.1007/978-2-287-33475-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-2-287-33475-7_15

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-287-33474-0

  • Online ISBN: 978-2-287-33475-7

Publish with us

Policies and ethics