Skip to main content
  • 1417 Accesses

Abstrait

Chez ľHomme et les mammifères de façon générale, la sécrétion ďinsuline par les cellules bêta des îlots de Langerhans joue un rôle majeur dans ľhoméostasie énergétique et notamment dans le contrôle de la glycémie. Une augmentation du débit de sécrétion de ľinsuline est le seul moyen dont ľorganisme dispose pour lutter contre ľhyperglycémie, alors qu’il existe plusieurs facteurs nerveux ou hormonaux dits contrarégulateurs, dont la libération est déclenchée par ľhypoglycémie. La molécule de glucose est indiscutablement le signal régulateur majeur de la biosynthèse et de la sécrétion de ľinsuline; c’est aussi le seul signal métabolique qui active le processus sécrétoire à des concentrations similaires aux concentrations physiologiques. Cependant on connaît de nombreux autres facteurs régulateurs de la sécrétion ďinsuline. Parmie eux: des nutriments (des acides aminés, les corps cétoniques et les acides gras), des médiateurs du système nerveux (noradrénaline, acétylcholine), des signaux hormonaux (GIP, GLP-1, leptine) et des agents pharmacologiques (sulfonylurées).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Docherty K, Clark AR (1994) Nutrient regulation of insulin gene expression. FASEB J 8: 20–7

    PubMed  CAS  Google Scholar 

  2. Ohlsson H, Karlsson K, Edlund T (1993) IPP1, a homeodomaincontaining transactivator of the insulin gene. EMBO J 12: 4251–9

    PubMed  CAS  Google Scholar 

  3. Peers B, Leonard J, Sharma S et al. (1994) Insulin expression in pancreatic islet cells relies on cooperative interactions between the helix loop helix factor E47 and the homeobox factor STF1. Mol Endocrinol 8: 1798–806

    Article  PubMed  CAS  Google Scholar 

  4. German M, Aschcroft S, Docherty K et al. (1995) The insulin gene promoter, a simplified nomenclature. Diabetes 44: 1002–4

    PubMed  CAS  Google Scholar 

  5. Leibiger B, Wahlander K, Berggren PO et al. (2000) Glucose-stimulated insulin biosynthesis depends on insulin-stimulated insulin gene transcription. J Biol Chem 275: 30153–6

    Article  PubMed  CAS  Google Scholar 

  6. Melloul D, Marshak S, Cerasi E (2002) Regulation of insulin gene transcription. Diabetologia 45: 309–26

    Article  PubMed  CAS  Google Scholar 

  7. Qiu Y, Guo M, Huang S et al. (2002) Insulin gene transcription is mediated by interactions between the p300 coactivator and PDX-1, B2 and E47. Mol Cell Biol 22: 412–20

    Article  PubMed  CAS  Google Scholar 

  8. Poitout V, Stein R, Rhodes CJ (2004) Insulin gene expression and biosynthesis. In: International textbook of diabetes mellitus 3rd ed. DeFronzo RA, Ferrannini, E, Keen H, Zimmet P (eds). Chichester: John Wiley & Sons, p 98

    Google Scholar 

  9. Drucker DJ, Philippe J, Mojsov S et al. (1987) Glucagon like peptide 1 stimulates insulin gene expression and increases cylic AMP levels in a rat islet cell line. Proc Natl Acad Sci USA 84: 3434–38

    Article  PubMed  CAS  Google Scholar 

  10. Hussain MA, Habener JF (2000) Glucagon like peptide 1 increases glucose-dependent activity of the homeoprotein IDX-1 transactivating domain in pancreatic beta-cells. Biochem Biophys Res Commun 274: 616–9

    Article  PubMed  CAS  Google Scholar 

  11. Koranyi L, James DE, Kraegen EW et al. (1992) Feedback inhibition of insulin gene expression by insulin. J Clin Invest 89: 432–6

    PubMed  CAS  Google Scholar 

  12. Kieffer TJ, Habener JF (2000) The adipoinsular axis: effects of leptin on pancreatic beta-cells. Am J Physiol 278: E1–E14

    CAS  Google Scholar 

  13. Rorsman P (1997) The pancreatic beta-cell as a fuel sensor: an electrophysiologist’s viewpoint. Diabetologia 40: 487–95

    Article  PubMed  CAS  Google Scholar 

  14. Lang J (1999) Molecular mechanisms and regulation of insulin exocytosis as a paradigm of endocrine secretion. Eur J Biochem 259: 3–17

    Article  PubMed  CAS  Google Scholar 

  15. Portha B (2000) Signalisation intracellulaire et exocytose de ľinsuline. Med Ther Endocrinol 2: 37–46

    Google Scholar 

  16. Henquin JC (1990) Les mécanismes cellulaires du contrôle de la sécrétion ďinsuline. Arch Int Physiol Biochim 98: A61–A80

    PubMed  CAS  Google Scholar 

  17. Maechler P, Kennedy ED, Pozzan T et al. (1997) Mitochondrial activation directly triggers the exocytosis of insulin in permeabilized pancreatic beta-cells. EMBO J 16: 3833–41

    Article  PubMed  CAS  Google Scholar 

  18. Wollheim C (2000) Beta-cell mitochondrial in the regulation of insulin secretion: a new culprit in type II diabetes. Diabetologia 43: 265–77

    Article  PubMed  CAS  Google Scholar 

  19. Henquin JC, Detimary D, Gembal M et al. (1994) Aspects biophysiques du contrôle de la sécrétion ďinsuline. Journées de Diabétologie de ľHôtel-Dieu, p 21–32

    Google Scholar 

  20. Wollheim CB, Lang J, Regazzi R (1996) The exocytosis process of insulin secretion and its regulation by Ca2+ and G-proteins. Diabetes Rev 4: 276–97

    Google Scholar 

  21. Aspinwall CA et al. (1999) Insulin-stimulated insulin secretion in single pancreatic beta cells. J Biol Chem 274: 6360–5

    Article  PubMed  CAS  Google Scholar 

  22. Aguilar-Bryan L, Bryan J (1999) Molecular biology of adenosine triphosphate-sensitive potassium channels. Endocrine Rev 20: 101–35

    Article  CAS  Google Scholar 

  23. Hellman B, Gylfe E, Bergsten P et al. (1994) Glucose induces oscillatory Ca2+ signalling and insulin release in human pancreatic beta cells. Diabetologia 37 (Suppl 2): S11–S

    Article  PubMed  CAS  Google Scholar 

  24. Corkey BA, Deeney JD, Yanev GC et al. (2000) The role of long-chain fatty acyl-CoA esters in beta-cell signal transduction. J Nutr 130: 299S–304S

    PubMed  CAS  Google Scholar 

  25. Maechler P, Wollheim CB (1999) Mitochondrial glutamate acts as a messenger in glucose-induced insulin exocytosis. Nature 402: 685–9

    Article  PubMed  CAS  Google Scholar 

  26. Prentki M, Matschinsky FM (1987) Ca2+, cAMP and phospholipid-derived messengers in coupling mechanisms of insulin secretion. Physiol Rev 67: 1185–248

    PubMed  CAS  Google Scholar 

  27. Gembal M, Gilon P, Henquin JC (1992) Evidence that glucose can control insulin release independently from its action on ATP-sensitive K+ channels in mouse beta-cells. J Clin Invest 89: 1288–95

    Article  PubMed  CAS  Google Scholar 

  28. Aizawa T, Komatsu M, Asanuma N et al. (1998) Glucose action beyond ionic events in the pancreatic beta cell. Trends Pharmacol Sci 19: 496–9

    Article  PubMed  CAS  Google Scholar 

  29. Henquin JC, Ravier MA, Nenquin M et al. (2003) Hierarchy of the beta-cell signals controlling insulin secretion. Eur J Clin Invest 33: 742–50

    Article  PubMed  CAS  Google Scholar 

  30. Thorens B (2003) Incrétines, insulino-sécrétion et diabète. Médecine/Sciences 19: 860–63

    Google Scholar 

  31. Ozaki N, Shibasaki T, Kashima Y et al. (2000) CAMP-GEFII is a direct target of cAMP in regulated exocytosis. Nat Cell Biol 2: 805–11

    Article  PubMed  CAS  Google Scholar 

  32. Gilon P, Henquin JC (2001) Mechanisms and physiological significance of the cholinergic control of pancreatic beta-cell function. Endocr Rev 22: 565–60

    Article  PubMed  CAS  Google Scholar 

  33. Ahren B (2000) Autonomic regulation of islet hormone secretion—Implications for health and disease. Diabetologia 43: 393–410

    Article  PubMed  CAS  Google Scholar 

  34. Kahn CR, Folli F (1993) Molecular determinants of insulin action. Horm Res 39 (suppl 3): 93–100

    Article  PubMed  CAS  Google Scholar 

  35. Baron V, Van Obberghen E (1995) Signalisation par le récepteur de ľinsuline. Journées de Diabétologie. Flammarion Médecine-Sciences, Paris, p 1–13

    Google Scholar 

  36. Cheatham B, Kahn CR (1995) Insulin action and the insulin signaling network. Endocrine Reviews 16: 117–42

    Article  PubMed  CAS  Google Scholar 

  37. Saltiel AR (1996) Diverse signaling pathways in the cellular actions of insulin. Am J Physiol 270: E375–85

    PubMed  CAS  Google Scholar 

  38. White MF (1997) The insulin signalling system and the IRS proteins. Diabetologia 40: S2–17

    Article  PubMed  CAS  Google Scholar 

  39. Holman GD, Kasuga M (1997) From receptor to transporter: insulin signalling to glucose transport. Diabetologia 40: 991–1003

    Article  PubMed  CAS  Google Scholar 

  40. White MF (2002) IRS proteins and the common path to diabetes. Am J Physiol Endocrinol Metab 2083: E413–E422

    Google Scholar 

  41. Saltiel AR, Pessin JE (2002) Insulin signalling pathways in time and space. Trends Cell Biol 12: 65–71

    Article  PubMed  CAS  Google Scholar 

  42. Burnol AF (2005) Mécanismes moléculaires de ľaction de ľinsuline. Méd Clin Endocr Diab (hors-série): 4–10

    Google Scholar 

  43. Myers MG, White MF (1995) New frontiers in insulin receptor substrate signaling. Trends Endocrinol Metab 6: 209–15

    Article  CAS  PubMed  Google Scholar 

  44. Rondinone CM, Wang LM, Lonnroth P et al. (1997) Insulin receptor substrate IRS-1 is reduced and IRS-2 is the main docking protein for phosphatidylinositol 3-kinase in adipocytes from subjects with non-insulin-dependent diabetes mellitus. Proc Natl Acad Sci USA 94: 4171–5

    Article  PubMed  CAS  Google Scholar 

  45. Summers SA, Birnbaum MJ (1997) A role for the serine/threonine kinase, Akt, in insulin-stimulated glucose uptake. Biochem Soc Trans 25: 981–8

    PubMed  CAS  Google Scholar 

  46. Lawrence JC, Roach PJ (1997) New insights into the role and mechanism of glycogen synthetase activation by insulin. Diabetes 4b: 541–7

    Article  Google Scholar 

  47. Biggs WH, Meisenhelder J, Hunter T et al. (1999) Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc Natl Acad Sci USA 96: 7421–6

    Article  PubMed  CAS  Google Scholar 

  48. Czech MP (2003) Insulin’s expanding control of forkheads. Proc Natl Acad Sci USA 100: 11198–200

    Article  PubMed  CAS  Google Scholar 

  49. Barthel A, Schmoll D (2003) Novel concepts in insulin regulation of hepatic gluconeogenesis. Am J Physiol Endocrinol Metab 285: E685–E692

    PubMed  CAS  Google Scholar 

  50. Puigserver P, Rhee J, Donovan J et al. (2003) Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-lalpha interaction. Nature 42: 550–5

    Article  CAS  Google Scholar 

  51. Oldham S, Hafen E (2003) Insulin/IGF and target of rapamycin signaling: a TOR de force in growth control. Trends Cell Biol 13: 79–85

    Article  PubMed  CAS  Google Scholar 

  52. Saltiel AR, Kahn CR (2001) Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414: 799–806

    Article  PubMed  CAS  Google Scholar 

  53. Foufelle F, Ferré P (2002) New perspectives in the regulation of hepatic glycolytic and lipogenic genes by insulin and glucose: a role for the transcription factor sterol regulatory element binding protein-1c. Biochem J 366: 377–91

    Article  PubMed  CAS  Google Scholar 

  54. Foufelle F, Hegarty B, Bobard A et al. (2005) Un nouveau rôle de ľinsuline dans la régulation du métabolisme glucido-lipidique hépatique. Med Sci (Paris) 21: 569–92

    Google Scholar 

  55. Kitamura T, Kitamura Y, Kuroda S et al. (1999) Insulin-induced phosphorylation and activation of cyclic nucleotide phosphodiesterase 3B by the serine-threonine kinase Akt. Mol Cell Biol 19: 6286–96

    PubMed  CAS  Google Scholar 

  56. Gingras AC, Kennedy SG, O’Leary MA et al. (1998) 4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt (PKB) signaling pathway. Genes Dev 12: 502–13

    PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag France, Paris

About this chapter

Cite this chapter

Portha, B. (2007). Insuline: de la production au mode ďaction. In: Traité de nutrition artificielle de l’adulte. Springer, Paris. https://doi.org/10.1007/978-2-287-33475-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-2-287-33475-7_12

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-287-33474-0

  • Online ISBN: 978-2-287-33475-7

Publish with us

Policies and ethics