Skip to main content

Orographic Cyclogenesis

  • Chapter
Extratropical Cyclones

Abstract

The idea that extratropical atmospheric variability on time scales of the order of several days is due to an intrinsic instability of the atmospheric circulation is widely accepted in dynamic meteorology. The most evident manifestation of this variability is the development and movement of cyclones and anticyclones (Blackmon et al. 1984). The leading process has been identified, after Charney (1947) and Eady (1949), in the baroclinic instability of a vertically sheared current. The basic formulation of the theory has been substantially improved over the past thirty years. While the linear problem has been generalized to more “realistic” basic state flows, the nonlinear problem has been tackled with an increasing degree of complexity, including dynamical analysis of chaotic regimes (Malguzzi et al. 1988; Buzzi et al. 1990). Baroclinic instability depends in an essential way upon boundary conditions, and orography enters the problem as a lower boundary condition. We shall see that orographic cyclogenesis is a phenomenological manifestation of the sensitivity of the baroclinic atmosphere to surface relief.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  • Blackmon, M. L., Y.-H. Lee and J. M. Wallace, 1984: Horizontal structure of 500 mb height fluctuations with long, intermediate and short time scales. J. Atmos. Sci., 41, 961–979.

    Article  Google Scholar 

  • Bleck, R., 1977: Numerical simulation of lee cyclogenesis in the Gulf of Genoa. Mon. Wea. Rev., 105, 428–445.

    Article  Google Scholar 

  • ——, and C. Mattocks, 1984: A preliminary analysis of the role of potential vorticity in Alpine lee cyclogenesis. Beitr. Phys. Atmos., 57, 357–368.

    Google Scholar 

  • Buzzi, A., 1986: Review of the weather phenomena observed during the ALPEX Special Observing Period. Sci. Conf. on the Results of the Alpine Experiment, Venice, 1985. WMO, Geneva, 15–27.

    Google Scholar 

  • ——, and S. Tibaldi, 1978: Cyclogenesis in the lee of the Alps: A case study. Quart. J. Roy. Meteor. Soc., 104, 271–287.

    Article  Google Scholar 

  • ——, and A. Speranza, 1983: Cyclogenesis in the lee of the Alps. Mesoscale Meteorology: Theories, Observations and Models, D. K. Lilly and T. Gal-Chen, Eds. NATO ASI Series, Reidel, 55–142.

    Google Scholar 

  • ——, and ——, 1986: A theory of deep cyclogenesis in the lee of the Alps. Part II: Effects of finite topographic slope and height. J. Atmos. Sci., 43, 2826–2837.

    Article  Google Scholar 

  • ——, and E. Tosi, 1989: Statistical behavior of transient eddies near mountains and implications for theories of lee cyclogenesis. J. Atmos. Sci., 46, 1233–1249.

    Article  Google Scholar 

  • ——, G. Giovanelli, T. Nanni and M. Tagliazucca, 1984: Study of high ozone concentrations in the troposphere associated with lee cyclogenesis during ALPEX. Beitr. Phys. Atmos., 57, 380–392.

    Google Scholar 

  • ——, A. Trevisan and E. Tosi, 1985: Isentropic analysis of a case of Alpine cyclogenesis. Beitr. Phys. Atmos., 58, 273–284.

    Google Scholar 

  • ——, ——, S. Tibaldi and E. Tosi, 1987: A unified theory of orographic influences upon cyclogenesis. Meteor. Atmos. Phys., 36, 91–107.

    Article  Google Scholar 

  • ——, P. Malguzzi and A. Trevisan, 1990: The statistical properties of the interaction of high-frequency eddies with mountains in a two-layer model. Tellus, 42A, 28–40.

    Article  Google Scholar 

  • Charney, J. G., 1947: The dynamics of long waves in a baroclinic westerly current. J. Meteor., 4, 125–162.

    Article  Google Scholar 

  • Chung, Y. S., 1977: On the orographic influence and lee cyclogenesis in the Andes, the Rockies and the East Asian mountains. Arch. Meteor. Geophys. Bioklim., A26, 1–12.

    Article  Google Scholar 

  • ——, K. D. Hage and E. R. Reinelt, 1976: On lee cyclogenesis and air flow in the Canadian Rocky mountains and the East Asian mountains. Mon. Wea. Rev., 104, 879–891.

    Article  Google Scholar 

  • Danielsen, E. F., 1973: Cyclogenesis in the Gulf of Genoa. Mesoscale Meteorological Phenomena. CNR-UNESCO, Venice, 189–192.

    Google Scholar 

  • Davies, H. C., and P. D. Phillips, 1985: Mountain drag along the Gotthard section during ALPEX. J. Atmos. Sci., 42, 2093–2109.

    Article  Google Scholar 

  • Dell’Osso, L., 1984: High-resolution experiments with the ECMWF model: A case study. Mon. Wea. Rev., 112, 1853–1883.

    Article  Google Scholar 

  • ——, and S. Tibaldi, 1982: Some preliminary modeling results on an ALPEX case of lee cyclogenesis. ALPEX Preliminary Scientific Results. GARP-ALPEX No. 7, WMO, Geneva, 3–19.

    Google Scholar 

  • ——, and D. Radinovié, 1984: A case study of cyclone development in the lee of the Alps on 18 March 1982. Beitr. Phys. Atmos., 57, 369–379.

    Google Scholar 

  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1, No. 3, 33–52.

    Article  Google Scholar 

  • Egger, J., 1972: Numerical experiments on the cyclogenesis in the Gulf of Genoa. Beitr. Phys. Atmos., 45, 320–346.

    Google Scholar 

  • ——, 1974: Numerical experiments on lee cyclogenesis. Mon. Wea. Rev., 102, 847–860.

    Article  Google Scholar 

  • ——, 1988: Alpine lee cyclogenesis: Verification of theories. J. Atmos. Sci., 45, 2176–2186.

    Article  Google Scholar 

  • Emeis, S., and M. Hantel, 1984: ALPEX diagnostics: Subsynoptic heat fluxes. Beitr. Phys. Atmos., 57, 495–511.

    Google Scholar 

  • Ficker, H. v., 1920: Der Einfluss der Alpen auf Fallgebiete des Luftdruckes und die Entstehung von Depressionen uber dem Mittelmeer. Meteor. Zeits., 37, 350–363.

    Google Scholar 

  • Frenzen, G., and P. Speth, 1984: ALPEX diagnostics: Kinetic energy and vorticity budgets for a case of lee cyclogenesis. Beitr. Phys. Atmos., 57, 512–526.

    Google Scholar 

  • ——, and ——, 1986: Comparative study of several cases of Alpine lee cyclogenesis: Kinetic energy and vorticity. Beitr. Phys. Atmos., 59, 216–230.

    Google Scholar 

  • Hafner, T. A., and R. B. Smith, 1985: Pressure drag on the European Alps in relation to synoptic events. J. Atmos. Sci., 42, 562–575.

    Article  Google Scholar 

  • Hantel, M., 1987: Subsynoptic vertical heat fluxes from high-resolution synoptic budgets. Meteor. Atmos. Phys., 36, 24–44.

    Article  Google Scholar 

  • Hayes, J. L., R. T. Williams and M. A. Rennick, 1987: Lee cyclogenesis. Part I: Analytic studies. J. Atmos. Sci., 44, 432–442.

    Article  Google Scholar 

  • Hortal, M., A. Jansa and C. Gimeno, 1985: Spanish LAM behavior in two cases of Mediterranean cyclogenesis. Sci. Conf. on the Results of the Alpine Experiment, Venice, 1985. WMO, Geneva, 195–206.

    Google Scholar 

  • Hoskins, B. J., M. E. McIntyre and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877–946.

    Article  Google Scholar 

  • Hsu, H.-H., 1987: Propagation of low-level circulation features in the vicinity of mountain ranges. Mon. Wea. Rev., 115, 1864–1892.

    Article  Google Scholar 

  • Illari, L., P. Malguzzi and A. Speranza, 1981: On the breakdown of the Westerlies. Geophys. Astrophys. Fluid Dyn., 17, 27–49.

    Article  Google Scholar 

  • Jansa, A., and C. Ramis, 1982: Catalonian-Balearic sea cyclogenesis. ALPEX Preliminary Scientific Results. GARPALPEX No. 7, WMO, Geneva, 49–61.

    Google Scholar 

  • Jarraud, M., A. J. Simmons and M. Kanamitsu, 1986: Impact of an envelope orography in the ECMWF model. ECMWF Seminar 1985, Vol. 2, 199–250.

    Google Scholar 

  • Johnson, D. R., and D. K. Hill, 1987: Quasi-Lagrangian diagnostics of a Mediterranean cyclone: Isentropic results. Meteor. Atmos. Phys., 36, 118–140.

    Article  Google Scholar 

  • Klein, W. H., 1957: Principal tracks and mean frequencies of cyclones and anticyclones in the Northern Hemisphere. Res. Pap. No. 40, U.S. Weather Bureau. U.S. Government Printing Office, Washington D.C., 60 pp.

    Google Scholar 

  • Kuettner, J., 1982: ALPEX Experiment Design. GARP-ALPEX No. 1, WMO, Geneva, 99 pp.

    Google Scholar 

  • Malguzzi, P., A. Trevisan and A. Speranza, 1987: Effects of finite height topography on nongeostrophic baroclinic instability: Implications to theories of lee cyclogenesis. J. Atmos. Sci., 44, 1475–1482.

    Article  Google Scholar 

  • ——, ——, U. Giostra and A. Speranza, 1988: Recent developments in the theory of orographic cyclogenesis: Impact of orographic modifications on statistical properties. Il Nuovo Cimento, 11C, 703–714.

    Article  Google Scholar 

  • Manabe, S., and T. B. Terpstra, 1974: The effects of mountains on the general circulation of the atmosphere as identified by numerical experiments. J. Atmos. Sci., 31, 3–42.

    Article  Google Scholar 

  • Mattocks, C., 1982: A precursory case study of lee cyclogenesis. ALPEX Preliminary Scientific Results. GARP-ALPEX No. 7, WMO, Geneva, 62–76.

    Google Scholar 

  • ——, and R. Bleck, 1986: Jet streak dynamics and geostrophic adjustment processes during the initial stages of lee cyclogenesis. Mon. Wea. Rev., 114, 2033–2056.

    Article  Google Scholar 

  • McGinley, J. A., 1982: A diagnosis of Alpine lee cyclogenesis. Mon. Wea. Rev., 110, 1271–1287.

    Article  Google Scholar 

  • ——, 1984: Analysis of flow blocking during ALPEX by imposition of mass continuity. Rivista Meteor. Aeron., 44, 95–102.

    Google Scholar 

  • ——, 1986a: A variational objective analysis scheme for analysis of the ALPEX data set. Sci. Conf. on the Results of the Alpine Experiment, Venice, 1985. WMO, Geneva, 59–72.

    Google Scholar 

  • ——, 1986b: Vorticity budgets for Alpine Cyclogenesis with and without the forcing of terrain. Sci. Conf. on the Results of the Alpine Experiment, Venice, 1985. WMO, Geneva, 265–280.

    Google Scholar 

  • ——, and J. S. Goerss, 1986: Effects of terrain height and blocking initialization on numerical simulation of Alpine lee cyclogenesis. Mon. Wea. Rev., 114, 1578–1590.

    Article  Google Scholar 

  • Mesinger, F., 1984: A blocking technique for representation of mountains in atmospheric models. Rivista Meteor. Aeron., 44, 195–202.

    Google Scholar 

  • ——, 1985: The sigma system problem. Preprints, Seventh Conf. on Numerical Weather Prediction, Montreal. Amer. Meteor. Soc., 340–347.

    Google Scholar 

  • ——, and E. Strickler, 1982: Effects of mountains on Genoa cyclogenesis. J. Meteor. Soc. Japan, 60, 326–338.

    Article  Google Scholar 

  • ——, and R. T. Pierrehumbert, 1986: Alpine lee cyclogenesis: Numerical simulation and theory. Sci. Conf. on the Results of the Alpine Experiment, Venice, 1985. WMO, Geneva, 141–164.

    Google Scholar 

  • Michaelides, S. C., 1987: Limited area energetics of Genoa cyclogenesis. Mon. Wea. Rev., 115, 13–26.

    Article  Google Scholar 

  • Pedlosky, J., 1964: The stability of currents in the atmosphere and the ocean. J. Atmos. Sci., 21, 201–219.

    Article  Google Scholar 

  • ——, 1979: Geophysical Fluid Dynamics. Springer-Verlag, 624 pp.

    Google Scholar 

  • Petterssen, S., 1956: Weather Analysis and Forecasting, 2nd ed., Vol. I. McGraw-Hill, 428 pp.

    Google Scholar 

  • ——, and S. J. Smebye, 1971: On the development of extratropical cyclones. Quart. J. Roy. Meteor. Soc., 97, 457–482.

    Article  Google Scholar 

  • Pham, H. L., 1982: Numerical simulation of a case of cyclogenesis during ALPEX. ALPEX Preliminary Scientific Results. GARP-ALPEX No. 7, WMO, Geneva, 36–40.

    Google Scholar 

  • ——, 1986: The role of Alpine mountains representation in the lee cyclogenesis simulation. Sci. Conf. on the Results of the Alpine Experiment, Venice, 1985. WMO, Geneva, 231–241.

    Google Scholar 

  • Pichler, H., and R. Steinacker, 1987: On the synoptics and dynamics of orographically induced cyclones in the Mediterranean. Meteor. Atmos. Phys., 36, 108–117.

    Article  Google Scholar 

  • Pierrehumbert, R. T., 1985: A theoretical model of orographically modified cyclogenesis. J. Atmos. Sci., 42, 1244–1258.

    Article  Google Scholar 

  • Radinovié, D., 1965a: Cyclonic activity in Yugoslavia and surrounding areas. Arch. Meteor. Geophys. Bioklim., A14, 391–408.

    Article  Google Scholar 

  • ——, 1965b: On the forecasting of cyclogenesis in the west Mediterranean and other areas bounded by mountain ranges by baroclinic model. Arch. Meteor. Geophys. Bioklim., A14, 279–299.

    Article  Google Scholar 

  • ——, 1986: On the development of orographic cyclones. Quart. J. Roy. Meteor. Soc., 112, 927–951.

    Article  Google Scholar 

  • ——, and D. Lalié, 1959: Cyclonic activity in the western Mediterranean. Fed. Hydromet. Institute, Belgrade. Memoirs No. 7, 57 pp.

    Google Scholar 

  • Rasmussen, E., and C. Zick, 1987: A subsynoptic vortex over the Mediterranean with some resemblance to Polar Lows. Tellus, 39A, 408–425.

    Article  Google Scholar 

  • Reimer, E., 1986: Analysis of ALPEX data. ECMWF Workshop: High resolution analysis. ECMWF, June 1985,155–181.

    Google Scholar 

  • Reiter, E. R., 1963: Jet Stream Meteorology. University of Chicago Press, 515 pp.

    Google Scholar 

  • Sanders, F., and J. R. Gyakum, 1980: Synoptic-dynamic climatology of the “bomb.” Mon. Wea. Rev., 108, 1589–1606.

    Article  Google Scholar 

  • Smith, R. B., 1984: A theory of lee cyclogenesis. J. Atmos. Sci., 41, 1159–1168.

    Article  Google Scholar 

  • ——, 1986: Further development of a theory of lee cyclogenesis. J. Atmos. Sci., 43, 1582–1602.

    Article  Google Scholar 

  • Speranza, A., 1975: The formation of baric depressions near the Alps. Annali di Geofis., 28, 177–217.

    Google Scholar 

  • ——, 1988: Orographic modification of cyclogenesis and blocking. ECMWF Seminar on the Nature and Prediction of Extratropical Weather Systems, September 1987. ECMWF, Reading, U.K., 175–192.

    Google Scholar 

  • ——, A. Buzzi, A. Trevisan and P. Malguzzi, 1985: A theory of deep cyclogenesis in the lee of the Alps. Part I: Modifications of baroclinic instability by localized topography. J. Atmos. Sci., 42, 1521–1535.

    Article  Google Scholar 

  • Steinacker, R., 1984: The isentropic vorticity and flow over and around the Alps. Rivista Meteor. Aeron., 44, 79–84.

    Google Scholar 

  • ——, A. Lanzinger and G. Mayr, 1988: Fine mesh analysis in the Alpine region. Proc. 20th Intl. Conf. on Alpine Meteorology. Servizio Meteorologico Italiano, in press.

    Google Scholar 

  • Tafferner, A., 1986: Numerical simulation of lee cyclogenesis during ALPEX with an isentropic coordinate model. Sci. Conf. on the Results of the Alpine Experiment, Venice, 1985. WMO, Geneva, 215–230.

    Google Scholar 

  • Tibaldi, S., 1980: Cyclogenesis in the lee of orography and its numerical modeling with special reference to the Alps. Orographic effects in planetary flows. GARP Pub. Ser. No. 23, R. Hide and P. W. White, Eds. WMO, Geneva, 207–232.

    Google Scholar 

  • ——, 1986: Envelope orography and maintenance of the quasistationary circulation in the ECMWF global models. Advances in Geophysics, 29, 339–374.

    Article  Google Scholar 

  • ——, and A. Trevisan, 1973: Application of a geostrophic NWP model. Mesoscale Meteorological Phenomena. CNR-UNESCO, Venice, 274–281.

    Google Scholar 

  • ——, and A. Buzzi, 1983: Effects of orography on Mediterranean lee cyclogenesis and its relationship to European blocking. Tellus, 35A, 269–286.

    Article  Google Scholar 

  • ——, and L. Dell’Osso, 1986: Representation of pressure drag effects in numerical modeling of Alpine cyclogenesis. Sci. Conf. on the Results of the Alpine Experiment, Venice, 1985. WMO, Geneva, 207–214.

    Google Scholar 

  • ——, A. Buzzi and P. Malguzzi, 1980: Orographically induced cyclogenesis: Analysis of numerical experiments. Mon. Wea. Rev., 108, 1302–1314.

    Article  Google Scholar 

  • Tosi, E., M. Fantini and A. Trevisan, 1983: Numerical experiments on orographic cyclogenesis: Relationship between the development of the lee cyclone and the basic flow characteristics. Mon. Wea. Rev., 111, 799–814.

    Article  Google Scholar 

  • ——, R. B. Smith and L. Bradford, 1987: Aerial observations of stratospheric descent in a Gulf of Genoa cyclone. Meteor. Atmos. Phys., 36, 141–160.

    Article  Google Scholar 

  • Trevisan, A., 1976: Numerical experiments on the influence of orography on cyclone formation with an isentropic primitive equation model. J. Atmos. Sci., 33, 768–780.

    Article  Google Scholar 

  • ——, A. Buzzi, E. Tosi and S. Rambaldi, 1985: A fine-mesh objective analysis scheme in isentropic coordinates. Il Nuovo Cimento, 8C, 805–821.

    Article  Google Scholar 

  • ——, L. Ferranti and P. Malguzzi, 1988: Further developments of normal mode theory of lee cyclogenesis: Isentropic coordinate model. J. Atmos. Sci., 45, 3880–3888.

    Article  Google Scholar 

  • U. K. Meteorological Office, 1962: Weather in the Mediterranean, Vol. 1. Her Majesty’s Stationery Office, London, 362 pp.

    Google Scholar 

  • Wallace, J. M., S. Tibaldi and A. Simmons, 1983: Reduction of systematic forecast errors in the ECMWF model through the introduction of an envelope orography. Quart. J. Roy. Meteor. Soc., 109, 683–718.

    Article  Google Scholar 

  • ——, G. H. Lim and M. L. Blackmon, 1988: Relationship between cyclone tracks, anticyclone tracks and baroclinic waveguides. J. Atmos. Sci., 45, 439–462.

    Article  Google Scholar 

  • Whittaker, L. M., and L. H. Horn, 1982: Atlas of Northern Hemisphere extratropical cyclone activity, 1958–1977. University of Wisconsin Press, Madison, 40 pp.

    Google Scholar 

  • Winston, J. S., 1955: Physical aspects of rapid cyclogenesis in the Gulf of Alaska. Tellus, 7, 481–500.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 American Meteorological Society

About this chapter

Cite this chapter

Tibaldi, S., Buzzi, A., Speranza, A. (1990). Orographic Cyclogenesis. In: Newton, C.W., Holopainen, E.O. (eds) Extratropical Cyclones. American Meteorological Society, Boston, MA. https://doi.org/10.1007/978-1-944970-33-8_7

Download citation

Publish with us

Policies and ethics