Skip to main content

Processes Contributing to the Rapid Development of Extratropical Cyclones

  • Chapter
Extratropical Cyclones

Abstract

The study of extratropical cyclones has provided the basis for vigorous scientific debates within the meteorological community for at least the past 150 years. In her monograph entitled The Thermal Theory of Cyclones: A History of Meteorological Thought in the Nineteenth Century, Kutzbach (1979) documents the interest of the leading European and American meteorologists of the 19th and early 20th centuries in providing a description of the weather and airflow associated with cyclones and identifying the physical processes that contribute to their development. In the 19th century, the emergence of the so-called “thermal theory of cyclones” (see Fig. 6.1) was based, to a large degree, on the work of Espy, who believed that the decrease of surface pressure in storms is related primarily to the release of latent heat in the ascending air near the storm center. By the early 20th century, the theoretical work of Margules and V. Bjerknes and the observational studies by Dines (which indicated extratropical cyclones were cold core systems) led to a more dynamically based perspective on cyclogenesis. The energy conversions and low-level convergence associated with instabilities in regions marked by significant temperature gradients (especially in the lower troposphere) were recognized as important contributing factors in the development of extra tropical storms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

REFERENCES

  • Achtor, T. H., and L. H. Horn, 1986: Spring season Colorado cyclones. Part 1: Use of composites to relate upper and lower tropospheric wind fields. J. Clim. Appl. Meteor., 25, 732–743.

    Article  Google Scholar 

  • Anthes, R. A., and D. Keyser, 1979: Tests of a fine-mesh model over Europe and the United States. Mon. Wea. Rev., 107, 963–984.

    Article  Google Scholar 

  • ——, Y.-H. Kuo and J. R. Gyakum, 1983: Numerical simulations of a case of explosive marine cyclogenesis. Mon. Wea. Rev., 111, 1174–1188.

    Article  Google Scholar 

  • Atlas, R., 1987: The role of oceanic fluxes and initial data in the numerical prediction of an intense coastal storm. Dyn. Atmos. and Oceans, 10, 359–388.

    Article  Google Scholar 

  • Baker, D. G., 1970: A study of high pressure ridges to the east of Appalachian Mountains. Ph.D. Dissertation, MIT, 127 pp.

    Google Scholar 

  • Beebe, R. G., and F. C. Bates, 1955: A mechanism for assisting in the release of convective instability. Mon. Wea. Rev., 83, 1–10.

    Article  Google Scholar 

  • Bell, G. P., and L. F. Bosart, 1988: Appalachian cold-air damming. Mon. Wea. Rev., 116, 137–161.

    Article  Google Scholar 

  • Bjerknes, J., 1919: On the structure of moving cyclones. Geofys. Publ. 1 No. 2,1–8.

    Google Scholar 

  • ——, 1951: Extratropical cyclones. Compendium of Meteorology, T. F. Malone, Ed. American Meteorological Society, 577–598.

    Google Scholar 

  • ——, and H. Solberg, 1922: Life cycle of cyclones and the polar front theory of atmospheric circulation. Geofys. Publ., 3, No. 1, 30–45.

    Google Scholar 

  • ——, and J. Holmboe, 1944: On the theory of cyclones. J. Meteor., 1, 1–22.

    Article  Google Scholar 

  • Bleck, R., 1973: Numerical forecasting experiments based on the conservation of potential vorticity on isentropic surfaces. J. Appl. Meteor., 12, 737–752.

    Article  Google Scholar 

  • ——, 1974: Short-range prediction in isentropic coordinates with filtered and unfiltered numerical models. Mon. Wea. Rev., 102, 813–829.

    Article  Google Scholar 

  • ——, and C. Mattocks, 1984: A preliminary analysis of the role of potential vorticity in Alpine lee cyclogenesis. Beitr. Phys. Atmos., 57, 357–368.

    Google Scholar 

  • Bosart, L. F., 1981: The Presidents’ Day snowstorm of 18–19 February 1979: A subsynoptic-scale event. Mon. Wea. Rev., 109, 1542–1566.

    Article  Google Scholar 

  • ——, and S. C. Lin, 1984: A diagnostic analysis of the Presidents’ Day storm of February 1979. Mon. Wea. Rev., 112, 2148–2177.

    Article  Google Scholar 

  • ——, and F. Sanders, 1986: Mesoscale structure in the megalopolitan snowstorm of 11–12 February 1983. Part III: A large amplitude gravity wave. J. Atmos. Sci., 43, 924–939.

    Article  Google Scholar 

  • ——, and A. Seimon, 1988: A case study of an unusually intense atmospheric gravity wave. Mon. Wea. Rev., 116, 1857–1886.

    Article  Google Scholar 

  • Boyle, J. S., and L. F. Bosart, 1983: A cyclone/anticyclone couplet over North America: An example of anticyclone evolution. Mon. Wea. Rev., 111, 1025–1045.

    Article  Google Scholar 

  • ——, and ——, 1986: Cyclone-anticyclone couplets over North America. Part II: Analysis of a major cyclone event over the eastern United States. Mon. Wea. Rev., 114, 2432–2465.

    Article  Google Scholar 

  • Brunt, D., 1930: The present position of theories of the origin of cyclonic depressions. Quart. J. Roy. Meteor. Soc., 56, 345–350.

    Google Scholar 

  • Burrows, W. R., R. A. Treidl and R. G. Lawford, 1979: The southern Ontario blizzard of January 26 and 27, 1978. Atmos. -Ocean, 17, 306–320.

    Article  Google Scholar 

  • Businger, S., and R. J. Reed, 1989: Cyclogenesis in cold air masses. Weather and Forecasting, 4, 133–156.

    Article  Google Scholar 

  • Buzzi, A., and S. Tibaldi, 1978: Cyclogenesis in the lee of the Alps: A case study. Quart. J. Roy. Meteor. Soc., 104, 271–287.

    Article  Google Scholar 

  • Cahir, J. J., 1971: Implications of circulations in the vicinity of jet streaks at subsynoptic scales. PhD. Thesis, Pennsylvania State University, 170 pp.

    Google Scholar 

  • Carlson, T. N., 1980: Airflow through midlatitude cyclones and the comma cloud pattern. Mon. Wea. Rev., 108, 1498–1509.

    Article  Google Scholar 

  • Chang, C. B., D. J. Perkey and C. W. Kreitzberg, 1982: A numerical case study of the effects of latent heating on a developing wave cyclone. J. Atmos. Sci., 39, 1555–1570.

    Article  Google Scholar 

  • ——, —— and ——, 1984: Latent heat induced energy transformations during cyclogenesis. Mon. Wea. Rev., 112, 357–367.

    Article  Google Scholar 

  • Charney, J. G., 1947: The dynamics of long waves in a baroclinic westerly current. J. Meteor., 4, 135–162.

    Article  Google Scholar 

  • Danard, M. B., 1964: On the influence of released latent heat on cyclone development. J. Appl. Meteor., 3, 27–37.

    Article  Google Scholar 

  • ——, 1983: On the role of the planetary boundary layer in cyclogenesis over the ocean. Atmos. -Ocean, 21, 466–470.

    Article  Google Scholar 

  • ——, 1986: On the sensitivity of predictions of maritime cyclo-genesis to convective precipitation and sea temperature. Atmos. -Ocean, 24, 52–72.

    Article  Google Scholar 

  • ——, and G. E. Ellenton, 1980: Physical influences on East Coast cyclogenesis. Atmos.-Ocean, 18, 65–82.

    Article  Google Scholar 

  • Danielsen, E. F., 1968: Stratospheric-tropospheric exchange based upon radioactivity, ozone and potential vorticity. J. Atmos. Sci., 25, 502–518.

    Article  Google Scholar 

  • Dare, P. M., and P. J. Smith, 1984: A comparison of observed and model energy balance for an extratropical cyclone system. Mon. Wea. Rev., 112, 1289–1308.

    Article  Google Scholar 

  • Dirks, R. A., J. P. Kuettner and J. A. Moore, 1988: Genesis of Atlantic Lows Experiment (GALE): An overview. Bull. Amer. Meteor. Soc., 69, 148–160.

    Article  Google Scholar 

  • Durst, C. S., and R. C. Sutcliffe, 1938: The importance of vertical motion in the development of tropical revolving storms. Quart. J. Roy. Meteor. Soc., 64, 75–84.

    Article  Google Scholar 

  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1 (3), 33–52.

    Article  Google Scholar 

  • Eliassen, A., 1956: Instability theories of cyclone formation. In: S. Petterssen, Weather Analysis and Forecasting, Chap. 15.

    Google Scholar 

  • ——, 1962: On the vertical circulation in frontal zones. Geofys. Publ., 24, 147–160.

    Google Scholar 

  • Emanuel, K. A., 1983: On assessing local conditional symmetric instability from atmospheric soundings. Mon. Wea. Rev., 111, 2016–2033.

    Article  Google Scholar 

  • ——, 1985: Frontal circulations in the presence of small moist symmetric instability. J. Atmos. Sci., 42, 1062–1071.

    Article  Google Scholar 

  • ——, 1988: Observational evidence of slantwise convective adjustment. Mon. Wea. Rev., 116, 1805–1816.

    Article  Google Scholar 

  • ——, and R. Rotunno, 1989: Polar lows or arctic hurricanes. Tellus, 41A, 1–17.

    Article  Google Scholar 

  • Farrell, B., 1984: Modal and non-modal baroclinic waves. J. Atmos. Sci., 41, 668–673.

    Article  Google Scholar 

  • ——, 1985: Transient growth of damped baroclinic waves. J. Atmos. Sci., 42, 2718–2727.

    Article  Google Scholar 

  • Gall, R., 1976: The effects of released latent heat in growing baroclinic waves. J. Atmos. Sci., 33, 1686–1701.

    Article  Google Scholar 

  • Godson, W. L., 1950: A study of the deviation of wind speeds and directions from geostrophic values. Quart. J. Roy. Meteor. Soc., 76, 3–15.

    Article  Google Scholar 

  • Gyakum, J. R., 1983a: On the evolution of the QE II storm. I: Synoptic aspects. Mon. Wea. Rev., 111, 1137–1155.

    Article  Google Scholar 

  • ——, 1983b: On the evolution of the QE II storm. II: Dynamic and thermodynamic structure. Mon. Wea. Rev., 111, 1156–1173.

    Article  Google Scholar 

  • Hadlock, R., and C. W. Kreitzberg, 1988: The Experiment on Rapidly Intensifying Cyclones over the Atlantic (ERICA) field study: Objectives and plans. Bull. Amer. Meteor. Soc., 69, 1309–1320.

    Article  Google Scholar 

  • Holland, G. J., A. H. Lynch and L. M. Leslie, 1987: Australian east-coast cyclones: Synoptic overview and case study. Mon. Wea. Rev., 115, 3024–3036.

    Article  Google Scholar 

  • Holton, J. R., 1979: An Introduction to Dynamic Meteorology, 2nd ed. Academic Press, 391 pp.

    Google Scholar 

  • Hoskins, B. J., M. E. McIntyre and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877–946.

    Article  Google Scholar 

  • Hovanec, R. D., and L. H. Horn, 1975: Static stability and the 300 mb isotach field in the Colorado cyclogenetic area. Mon. Wea. Rev., 103, 628–638.

    Article  Google Scholar 

  • Johnson, D. R., and W. K. Downey, 1976: The absolute angular momentum budget of an extratropical cyclone: Quasi-Lagrangian diagnostics 3. Mon. Wea. Rev., 104, 3–14.

    Article  Google Scholar 

  • Kenney, S. E., and P. J. Smith, 1983: On the release of eddy available potential energy in an extratropical cyclone system. Mon. Wea. Rev., 111, 745–755.

    Article  Google Scholar 

  • Keyser, D., and T. N. Carlson, 1984: Transverse ageostrophic circulations associated with elevated mixed layers. Mon. Wea. Rev., 112, 2465–2478.

    Article  Google Scholar 

  • ——, and M. A. Shapiro, 1986: A review of the structure and dynamics of upper-level frontal zones. Mon. Wea. Rev., 114, 452–499.

    Article  Google Scholar 

  • ——, and L. W. Uccellini, 1987: Regional models: Emerging research tools for synoptic meteorologists. Bull. Amer. Meteor. Soc., 68, 306–320.

    Article  Google Scholar 

  • Kleinschmidt, E., 1950: On the structure and origin of cyclones (Part 1). Meteor. Rundsch., 3, 1–6.

    Google Scholar 

  • Kleinschmidt, E., 1957: Cyclones and anticyclones. Chap. IV in Dynamic Meteorology, by A. Eliassen and E. Kleinschmidt. Handbuch der Physik, 48, S. Flügge, Ed. Springer-Verlag, 1–154.

    Google Scholar 

  • Kocin, P. J., and L. W. Uccellini, 1990: Snowstorms Along the Northeastern Coast of the United States: 1955 to 1985. Meteor. Monogr., 22, No. 44, 280 pp.

    Google Scholar 

  • ——, J. W. Zack and M. L. Kaplan, 1985: A mesoscale numerical forecast of an intense convective snowburst along the East Coast. Bull. Amer. Meteor. Soc., 66, 1412–1424.

    Google Scholar 

  • ——, —— and R. A. Petersen, 1986: Rapid evolution of a jet streak circulation in a pre-convective environment. Meteor. Atmos. Phys., 35, 103–138.

    Article  Google Scholar 

  • Krishnamurti, T. N., 1968: A study of a developing wave cyclone. Mon. Wea. Rev, 96, 208–217.

    Article  Google Scholar 

  • Kuo, Y.-H., and R. J. Reed, 1988: Numerical simulation of an explosively deepening cyclone in the eastern Pacific. Mon. Wea. Rev., 116, 2081–2105.

    Article  Google Scholar 

  • ——, and S. Low-Nam, 1990: Prediction of nine explosive cyclones over the western Atlantic Ocean with a regional model. Mon. Wea. Rev., 118, 3–25.

    Article  Google Scholar 

  • Kutzbach, G., 1979: The Thermal Theory of Cyclones. A History of Meteorological Thought in the Nineteenth Century. American Meteorological Society, 254 pp.

    Google Scholar 

  • Leslie, L. M., G. J. Holland and A. H. Lynch, 1987: Australian east-coast cyclones: Numerical modeling study. Mon. Wea. Rev., 115, 3037–3053.

    Article  Google Scholar 

  • Maddox, R. A., D. J. Perkey and J. M. Fritsch, 1981: Evolution of upper tropospheric features during the development of a mesoscale convective complex. J. Atmos. Sci., 38, 1664–1674.

    Article  Google Scholar 

  • Mailhot, J., and C. Chouinard, 1989: Numerical forecasts of explosive winter storms: Sensitivity experiments with a meso-a scale model. Mon. Wea. Rev., 117, 1311–1343.

    Article  Google Scholar 

  • Manobianco, J. T., 1989: Explosive East Coast cyclogenesis: Numerical experimentation and model-based diagnosis. Mon. Wea. Rev., 117, 2384–2405.

    Article  Google Scholar 

  • Mattocks, C., and R. Bleck, 1986: Jet streak dynamics and geostrophic adjustment processes during the initial stages of lee cyclogenesis. Mon. Wea. Rev., 114, 2033–2056.

    Article  Google Scholar 

  • Morris, R. M., and A. J. Gadd, 1988: Forecasting the storm. Weather, 43, 70–89.

    Article  Google Scholar 

  • Mullen, S. L., and D. P. Baumhefner, 1988: Sensitivity of numerical simulations of explosive oceanic cyclogenesis to changes in physical parameterizations. Mon. Wea. Rev., 116, 2289–2329

    Article  Google Scholar 

  • Murray, R., and S. M. Daniels, 1953: Transverse flow at entrance and exit to jet streams. Quart. J. Roy. Meteor. Soc., 79, 236–241.

    Article  Google Scholar 

  • Namias, J., and P. F. Clapp, 1949: Confluence theory of the high tropospheric jet stream. J. Meteor., 6, 330–336.

    Article  Google Scholar 

  • Newton, C. W., 1954: Frontogenesis and frontolysis as a three-dimensional process. J. Meteor., 11, 449–461.

    Article  Google Scholar 

  • ——, 1956: Mechanisms of circulation change during lee cyclogenesis. J. Meteor., 13, 528–539.

    Article  Google Scholar 

  • ——, and E. Palmen, 1963: Kinematic and thermal properties of a large-amplitude wave in the westerlies. Tellus, 15, 99–119.

    Google Scholar 

  • ——, and A. Trevisan, 1984: Clinogenesis and frontogenesis in jet-stream waves. Part I: Analytical relations to wave structure. J. Atmos. Sci., 41, 2717–2734 .

    Article  Google Scholar 

  • Nordeng, T. E., 1987: The effect of vertical and slantwise convection on the simulation of polar lows. Tellus, 39A, 354–375.

    Article  Google Scholar 

  • ——, 1990: A model-based diagnostic study of the development and maintenance mechanism of two polar lows. Tellus, 42A, 92–108.

    Article  Google Scholar 

  • Økland, H., 1987: Heating by organized convection as a source of polar low intensification. Tellus, 39A, 397–407.

    Article  Google Scholar 

  • Ooyama, K. V., 1982: Conceptual evolution of the theory and modeling of the tropical cyclone. J. Meteor. Soc. Japan, 60, 369–379.

    Article  Google Scholar 

  • Palmén, E., 1951: The aerology of extratropical disturbances. Compendium of Meteorology, T. F. Malone, Ed. American Meteorological Society, 599–620.

    Google Scholar 

  • ——, and C. W. Newton, 1969: Atmospheric Circulation Systems. Their Structure and Physical Interpretation. Academic Press, 603 pp.

    Google Scholar 

  • Petterssen, S., 1955: A general survey of factors influencing development at sea-level. J. Meteor., 12, 36–42.

    Article  Google Scholar 

  • ——, 1956: Weather Analysis and Forecasting, 2nd ed., Vol. 1. McGraw-Hill, 428 pp.

    Google Scholar 

  • ——, and S. J. Smebye, 1971: On the development of extratropical cyclones. Quart. J. Roy. Meteor. Soc., 97, 457–482.

    Article  Google Scholar 

  • ——, D. L. Bradbury and K. Pedersen, 1962: The Norwegian cyclone models in relation to heat and cold sources. Geofys. Publ., 24, 243–280.

    Google Scholar 

  • Rasmussen, E., 1979: The polar low as an extratropical CISK disturbance. Quart. J. Roy. Meteor. Soc., 105, 531–549.

    Article  Google Scholar 

  • Reed, R. J., 1955: A study of a characteristic type of upper-level frontogenesis. J. Meteor., 12, 226–237.

    Article  Google Scholar 

  • ——, and F Sanders, 1953: An investigation of the development of a mid-tropospheric frontal zone and its associated vorticity field. J. Meteor., 10, 338–349.

    Article  Google Scholar 

  • ——, and E. F Danielsen, 1959: Fronts in the vicinity of the tropopause. Arch. Meteor. Geophys. Bioklim., A11, 1–17.

    Google Scholar 

  • ——, and M. D. Albright, 1986: A case study of explosive cyclogenesis in the eastern Pacific. Mon. Wea. Rev., 114, 2297–2319.

    Article  Google Scholar 

  • ——, A. J. Simmons, M. D. Albright and P. Undén, 1988: The role of latent heat release in explosive cyclogenesis: Three examples based on ECMWF operational forecasts. Weather and Forecasting, 3, 217–229.

    Article  Google Scholar 

  • Reiter, E. R., 1963: Jet Stream Meteorology. University of Chicago Press, 515 pp.

    Google Scholar 

  • Richwien, B. A., 1980: The damming effect of the southern Appalachians. Nat. Wea. Dig., 5, 2–12.

    Google Scholar 

  • Riehl, H., and Collaborators, 1952: Forecasting in Middle Latitudes. Meteor. Monogr., 1, No. 5, 80 pp.

    Google Scholar 

  • Robertson, F. R., and P. J. Smith, 1983: The impact of model moist processes on the energetics of extratropical cyclones. Mon. Wea. Rev., 111, 723–744.

    Article  Google Scholar 

  • Roebber, P. J., 1984: Statistical analysis and updated climatology of explosive cyclones. Mon. Wea. Rev., 112, 1577–1589.

    Article  Google Scholar 

  • Rogers, E., and L. F. Bosart, 1986: An investigation of explosively deepening oceanic cyclones. Mon. Wea. Rev., 114, 702–718.

    Article  Google Scholar 

  • Salmon, E. M., and P. J. Smith, 1980: A synoptic analysis of the 25–26 January 1978 blizzard in the central United States. Bull. Amer. Meteor. Soc., 61, 453–460.

    Article  Google Scholar 

  • Sanders, F., 1986: Explosive cyclogenesis in the west-central North Atlantic Ocean, 1981–1984. Part I: Composite structure and mean behavior. Mon. Wea. Rev., 114, 1781–1794.

    Article  Google Scholar 

  • ——, 1987: Skill of NMC operational models in prediction of explosive cyclogenesis. Weather and Forecasting, 2, 322–336.

    Article  Google Scholar 

  • ——, and J. R. Gyakum, 1980: Synoptic-dynamic climatology of the “bomb.” Mon. Wea. Rev., 108, 1589–1606.

    Article  Google Scholar 

  • ——, and L. F. Bosart, 1985a: Mesoscale structure in the megalopolitan snowstorm of 11–12 February 1983. Part I: Frontogenetical forcing and symmetric instability. J. Atmos. Sci., 42, 1050–1061.

    Article  Google Scholar 

  • ——, and ——, 1985b: Mesoscale structure in the megalopolitan snowstorm of 11–12 February 1983. Part II: Doppler radar study of the New England snowband. J. Atmos. Sci., 42, 1398–1407.

    Article  Google Scholar 

  • Sardie, J. M., and T. T. Warner, 1985: On the mechanism for the development of polar lows. J. Atmos. Sci., 40, 869–881.

    Article  Google Scholar 

  • Schneider, R. S., 1990: Large amplitude mesoscale wave disturbances within the intense midwest extratropical cyclone of 15 December 1987. Weather and Forecasting, 5, submitted.

    Google Scholar 

  • Sechrist, E S., and J. A. Dutton, 1970: Energy conversions in a developing cyclone. Mon. Wea. Rev., 98, 354–362.

    Article  Google Scholar 

  • Shapiro, M. A., 1981: Frontogenesis and geostrophically forced secondary circulations in the vicinity of jet stream-frontal zone systems. J. Atmos. Sci., 38, 954–973.

    Article  Google Scholar 

  • ——, and P. J. Kennedy, 1981: Research aircraft measurements of jet stream geostrophic and ageostrophic winds. J. Atmos. Sci., 38, 2642–2652.

    Article  Google Scholar 

  • ——, L. S. Fedor and T. Hampel, 1987: Research aircraft measurements of a polar low over the Norwegian Sea. Tellus, 39A, 272–306.

    Article  Google Scholar 

  • Shutts, G. J., M. Booth and J. Norbury, 1988: A geometric model of balanced axisymmetric flows with embedded penetrative convection. J. Atmos. Sci., 45, 2609–2621.

    Article  Google Scholar 

  • Sinclair, M. R., and R. L. Elsberry, 1986: A diagnostic study of baroclinic disturbances in polar air streams. Mon. Wea. Rev., 114, 1957–1983.

    Article  Google Scholar 

  • Smith, P. J., C. H. Tsou and M. N. Baker, 1988: Static stability variations during a winter marine cyclone development. Preprints, Palmen Memorial Symposium on Extratropical Cyclones. Amer. Meteor. Soc., 132–135.

    Google Scholar 

  • Staley, D. O., 1960: Evaluation of potential-vorticity changes near the tropopause and related vertical motions, vertical advection of vorticity, and transfer of radioactive debris from stratosphere to troposphere. J. Meteor., 17, 591–620.

    Article  Google Scholar 

  • ——, and R. L. Gall, 1977: On the wavelength of maximum baroclinic instability. J. Atmos. Sci., 34, 1679–1688.

    Article  Google Scholar 

  • Stauffer, D. R., and T. T. Warner, 1987: A numerical study of Appalachian cold-air damming and coastal frontogenesis. J. Appl. Meteor., 115, 799–821.

    Google Scholar 

  • Stewart, R. E., R. W. Shaw and G. A. Isaac, 1987: Canadian Atlantic Storms Program: The meteorological field project. Bull. Amer. Meteor. Soc., 68, 338–345.

    Article  Google Scholar 

  • Sutcliffe, R. C., 1939: Cyclonic and anticyclonic development. Quart. J. Roy. Meteor. Soc., 65, 518–524.

    Article  Google Scholar 

  • ——, 1947: A contribution to the problem of development. Quart. J. Roy. Meteor. Soc., 73, 370–383.

    Article  Google Scholar 

  • ——, and A. G. Forsdyke, 1950: The theory and use of upper air thickness patterns in forecasting. Quart. J. Roy. Meteor. Soc., 76, 189–217.

    Article  Google Scholar 

  • Tracton, M. S., 1973: The role of cumulus convection in the development of extratropical cyclones. Mon. Wea. Rev., 101, 573–592.

    Article  Google Scholar 

  • Uccellini, L. W., 1975: A case study of apparent gravity wave initiation of severe convective storms. Mon. Wea. Rev., 103, 497–513.

    Article  Google Scholar 

  • ——, 1984: Comments on “Comparative diagnostic case study of East Coast secondary cyclogenesis under weak versus strong synoptic-scale forcing.” Mon. Wea. Rev., 112, 2540–2541.

    Article  Google Scholar 

  • ——, 1986: The possible influence of upstream upper-level baroclinic processes on the development of the QE II storm. Mon. Wea. Rev., 114, 1019–1027.

    Article  Google Scholar 

  • ——, and D. R. Johnson, 1979: The coupling of upper and lower tropospheric jet streaks and implications for the development of severe convective storms. Mon. Wea. Rev., 107, 682–703.

    Article  Google Scholar 

  • ——, and S. E. Koch, 1987: The synoptic setting and possible energy sources for mesoscale wave disturbances. Mon. Wea. Rev., 115, 721–729.

    Article  Google Scholar 

  • ——, and P. J. Kocin, 1987: The interaction of jet streak circulations during heavy snow events along the East Coast of the United States. Weather and Forecasting, 2, 289–308.

    Article  Google Scholar 

  • ——, R. A. Petersen, C. H. Wash and K. F. Brill, 1984: The Presidents’ Day cyclone of 18–19 February 1979: Synoptic overview and analysis of the subtropical jet streak influencing the pre-cyclogenetic period. Mon. Wea. Rev., 112, 31–55.

    Article  Google Scholar 

  • ——, D. Keyser, K. F. Brill and C. H. Wash, 1985: The Presidents’ Day cyclone of 1–19 February 1979: Influence of upstream trough amplification and associated tropopause folding on rapid cyclogenesis. Mon. Wea. Rev., 113, 962–988.

    Article  Google Scholar 

  • ——, R. A. Petersen, K. F. Brill, P. J. Kocin and J. J. Tuccillo, 1987: Synergistic interactions between an upper-level jet streak and diabatic processes that influence the development of a low-level jet and a secondary coastal cyclone. Mon. Wea. Rev., 115, 2227–2261.

    Article  Google Scholar 

  • Wash, C. H., J. E. Peak, W. F. Calland and W. A. Cook, 1988: Diagnostic study of explosive cyclogenesis during FGGE. Mon. Wea. Rev., 116, 431–451.

    Article  Google Scholar 

  • Whitaker, J. S., L. W. Uccellini and K. F. Brill, 1988: A model-based diagnostic study of the rapid development phase of the Presidents’ Day cyclone. Mon. Wea. Rev., 116, 2337–2365.

    Article  Google Scholar 

  • Young, M. V., G. A. Monk and K. A. Browning, 1987: Interpretation of satellite imagery of a rapidly deepening cyclone. Quart. J. Roy. Meteor. Soc., 11, 1089–1115.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 American Meteorological Society

About this chapter

Cite this chapter

Uccellini, L.W. (1990). Processes Contributing to the Rapid Development of Extratropical Cyclones. In: Newton, C.W., Holopainen, E.O. (eds) Extratropical Cyclones. American Meteorological Society, Boston, MA. https://doi.org/10.1007/978-1-944970-33-8_6

Download citation

Publish with us

Policies and ethics