Skip to main content

Advances in Numerical Prediction of the Atmospheric Circulation in the Extratropics

  • Chapter
Extratropical Cyclones

Abstract

The complexity and variability of atmospheric motion and their manifestations in all kinds of weather phenomena constitute a major scientific, technical and practical challenge to the meteorological community. The weather affects practically all meteorological aspects of human affairs and influences society both directly and indirectly. There is no doubt that the prediction of weather and the understanding of atmospheric processes are the primary tasks of the meteorological services. The prediction of the weather requires a fundamental understanding of the laws that govern the atmosphere and of the many feedback processes involving the atmosphere, oceans and the land surfaces. Predicting the weather is primarily an initial value . problem and hence the accuracy of weather prediction is directly related to the accuracy of observations and their distribution in time and space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Andersen, J. H., 1977: A routine for normal mode initialization with nonlinear correction for multilevel spectral model with triangular truncation. ECMWF Int. Rep. No. 15, 41 pp.

    Google Scholar 

  2. Anthes, R. A., 1977: A cumulus parameterization scheme utilizing a one-dimensional cloud model. Mon. Wea. Rev., 105, 270–286.

    Article  Google Scholar 

  3. Arakawa, A., and J:M. Chen, 1987: Closure assumption in the cumulus parameterization problem. Short- and Medium-Range Numerical Weather Prediction, T. Matsuno, Ed. Meteorological Society of Japan, 107–131.

    Google Scholar 

  4. Arpe, K., and E. Klinker, 1986: Systematic errors of the ECMWF operational forecasting model in midlatitudes. Quart. J. Roy. Meteor. Soc., 112, 181–202.

    Article  Google Scholar 

  5. ——, A. Hollingsworth, M. S. Tracton, A. C. Lorenc, S. Uppala and P. Kallberg, 1985: The response of numerical weather prediction systems to FGGE level IIB data. Part II: Forecast verification in implication for predictability. Quart. J. Roy. Meteor. Soc., 111, 67–102.

    Article  Google Scholar 

  6. ——,, C. Brankovic, E. Oriol and P. Speth, 1986: Variability in time and space of energetics from a long series of atmospheric data produced by ECMWF. Contr. Atmos. Phys., 59, 121–325

    Google Scholar 

  7. Baede, A. P. M., M. Jarraud and U. Cubasch, 1979: Adiabatic formulation of ECMWF’s spectral model. ECMWF Tech. Rep., 15, 1–40.

    Google Scholar 

  8. Baer, F., and J. Tribbia, 1977: On complete filtering of gravity modes through nonlinear initialization. Mon. Wea. Rev., 105, 1536–1539.

    Article  Google Scholar 

  9. Bates, J. R., and A. McDonald, 1982: Multiple-upstream, semi-Lagrangian advective schemes: Analysis and application to multilevel primitive equation model. Mon. Wea. Rev., 110, 1831–1842.

    Article  Google Scholar 

  10. Bengtsson, L., 1981: Numerical prediction of atmospheric blocking. A case study. Tellus, 33, 19–42.

    Article  Google Scholar 

  11. ——, 1985: Medium-range forecasting at the ECMWF. Advances in Geophysics, 28B, 3–54.

    Article  Google Scholar 

  12. ——, 1989: On the growth of error in data-assimilation systems. ECMWF Seminar Proceedings, 5–9 September 1988, in press.

    Google Scholar 

  13. ——, and A. Lange, 1982: Results of the WMO/CAS Numerical Weather Prediction Data Study and Intercomparison Project for Forecasts for the Northern Hemisphere in 1979–80. World Meteorological Organization, Geneva, 26 pp, 71 figs. and Annex.

    Google Scholar 

  14. ——, and A. Simmons, 1983: Medium range weather prediction — operational experience at ECMWF. Large-Scale Dynamical Processes in the Atmosphere, B. J. Hoskins and R. P. Pearce, Eds. Academic Press, 337–363.

    Google Scholar 

  15. ——, M. Kanamitsu, P. Kallberg and S. Uppala, 1982: FGGE 4-dimensional data assimilation at ECMWF. Bull. Amer. Meteor. Soc., 63, 29–43.

    Article  Google Scholar 

  16. Bergthorsson, P., B. R. Doos, S. Fryklund, O. Haug and R. Lindqvist, 1955: Routine forecasting with the barotropic model. Tellus, 7, 272–276.

    Google Scholar 

  17. Betts, A. K., 1986: A new convection adjustment scheme. Part I: Observational and theoretical basis. Quart. J. Roy. Meteor. Soc., 112, 677–691.

    Google Scholar 

  18. ——, and M. J. Miller, 1986: A new convective adjustment scheme. Part II: Single column testing using GATE wave, BOMEX, ATEX and arctic air-mass data sets. Quart. J. Roy. Meteor. Soc., 112, 693–709.

    Google Scholar 

  19. Bjerknes, J., 1966: A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature. Tellus, 18, 820–829.

    Article  Google Scholar 

  20. Blackmon, M. L., J. M. Wallace, N.-C. Lau and S. L. Mullen, 1977: An observational study of the Northern Hemisphere wintertime circulation. J. Atmos. Sci., 34, 1040–1053.

    Article  Google Scholar 

  21. Boer, G. J., N. A. McFarlane, R. Laprise, J. D. Henderson and J.-P. Blanchet, 1984: The Canadian Climate Centre spectral atmospheric general circulation model. Atmos.-Ocean, 22, 397–429.

    Article  Google Scholar 

  22. Bolin, B., 1950: On the influence of the earth’s orography on the general character of the westerlies. Tellus, 2, 184–195.

    Article  Google Scholar 

  23. Bougeault, P., 1985: Parameterization of cumulus convection for GATE. A diagnostic and semipragmatic study. Mon. Wea. Rev. 113, 2108–2121.

    Article  Google Scholar 

  24. Bourke, W., 1972: An efficient one-level primitive equation spectral model. Mon. Wea. Rev., 100, 683–689.

    Article  Google Scholar 

  25. Bretherton, F. P., 1969: Momentum transport by gravity waves. Quart. J. Roy. Meteor. Soc., 95, 213–243.

    Article  Google Scholar 

  26. Briere, S., 1982: Nonlinear normal mode initialization of a limited area model. Mon. Wea. Rev., 110, 1166–1186.

    Article  Google Scholar 

  27. Burridge, D. M., 1975: A split semi-implicit reformulation of the Bushby-Timpson 10-level model. Quart. J. Roy. Meteor. Soc., 101, 777–792.

    Google Scholar 

  28. Charney, J. G., 1947: The dynamics of long waves in a baroclinic westerly current. J. Meteor., 4, 135–162.

    Article  Google Scholar 

  29. ——, and Eliassen, A., 1949: A numerical method for predicting the perturbations of middle latitude westerlies. Tellus, 1, No. 2, 38–54.

    Article  Google Scholar 

  30. ——, and J. G. DeVore, 1979: Multiple flow equilibria in the atmosphere and blocking. J. Atmos. Sci., 36, 1205–1216.

    Article  Google Scholar 

  31. ——, R. Fjetrtoft and J. von Neumann, 1950: Numerical integration of the barotropic vorticity equation. Tellus, 2, 237–254.

    Article  Google Scholar 

  32. Chouinard, C., M. Beland and N. McFarlane, 1986: A simple gravity wave drag parameterization for use in medium-range weather forecast models. Atmos.-Ocean, 24, 91–110.

    Article  Google Scholar 

  33. Coiffier, J., Y. Ernie, J.-F. Geleyn, J. Clochard, J. Hoffman and F. Dupont, 1987: The operational hemispheric model at the French Meteorological Service. Short- and Medium-Range Numerical Weather Prediction, T. Matsuno, Ed. Meteorological Society of Japan, 337–357.

    Google Scholar 

  34. Cullen, M. J. P., 1983: Current progress and prospects in numerical techniques for weather prediction models. J. Comp. Physics, 50, 1–37.

    Article  Google Scholar 

  35. Dalcher, A., and E. Kalnay, 1987: Error growth and predictability in operational ECMWF forecasts. Tellus, 39A, 474–491.

    Article  Google Scholar 

  36. Daley, R., 1979: The application of nonlinear normal mode initialization to an operational forecast model. Atmos.-Ocean, 17, 97–124.

    Article  Google Scholar 

  37. Defant, F, 1959: On hydrodynamical instability caused by an approach of subtropical and polar jet stream in northern latitudes before the onset of strong cyclogenesis. The Atmosphere and the Sea in Motion, B. Bolin, Ed. Rockefeller Institute Press, 305–325.

    Google Scholar 

  38. Dell’Osso, L., 1984: High-resolution experiments with the ECMWF model. A case study. Mon. Wea. Rev., 112, 1853–1883.

    Article  Google Scholar 

  39. Dickinson, R. E., and D. L. Williamson, 1972: Free oscillations of a discrete stratified fluid with application to numerical weather prediction. J. Atmos. Sci., 29, 623–640.

    Article  Google Scholar 

  40. ECMWF, 1988: Proceedings from the ECMWF Workshop on Diabatic Forcing, 30 November-2 December 1987 ECMWF, Reading, U.K.

    Google Scholar 

  41. Edelmann, W., 1984: A convection scheme used by the German forecast model. LAM Newsletter, Number 8 (May 1984). European Working Group on Limited Area Modeling.

    Google Scholar 

  42. Eliasen, E., B. Machenhauer and E. Rasmussen, 1970: On a numerical method for integration of the hydrodynamical equations with a spectral representation of the horizontal fields. Rep. No. 2, Institut for Teoretisk Meteorologi. University of Copenhagen.

    Google Scholar 

  43. ——, 1954: Provisional report on calculation of spatial covariance and autocorrelation of the pressure field. Rap. No. 5, Videnskapsakademisk Institutt for Vaer og Klimaforskning, Oslo, Norway.

    Google Scholar 

  44. Gadd, A. J., 1978: A split explicit integration scheme for numerical weather prediction. Quart. J. Roy. Meteor. Soc., 104, 569–582.

    Article  Google Scholar 

  45. C. D. Hall and R. E. Kruze, 1990: Operational numerical prediction of rapid cyclogenesis over the North Atlantic. Tellus, 42A, 116–121.

    Article  Google Scholar 

  46. Gandin, L. S., 1963: Objective Analysis of Meteorological Fields. Gidromet. Izdat., translated from Russian by the Israel Program for Scientific Translations (1965), 242 pp.

    Google Scholar 

  47. Geleyn, J.-F., 1985: On a simple, parameter-free partition between moistening and precipitation in the Kuo scheme. Mon. Wea. Rev., 113, 405–407.

    Article  Google Scholar 

  48. Girard, C., and M. Jarraud, 1982: Short- and medium-range forecast differences between a spectral and a grid-point model. An extensive quasi-operational comparison. ECMWF Tech. Rep. 32, 1–78.

    Google Scholar 

  49. Grönâs, S., 1982: Systematic errors and forecast quality of ECMWF forecasts in different large-scale flow patterns. ECMWF Seminar/Workshop on Interpretation of Numerical Weather Prediction Products, 13–24 September 1982, 161–206.

    Google Scholar 

  50. Haltiner, G. J., and R. T. Williams, 1980: Numerical Prediction and Dynamic Meteorology, 2nd ed. Wiley, 477 pp.

    Google Scholar 

  51. Hinkelmann, K., 1959: Ein numerisches Experiment mit den primitiven Gleichungen. The Atmosphere and the Sea in Motion, B. Bolin, Ed. Rockefeller Institute Press, 486–500.

    Google Scholar 

  52. Hollingsworth, A., 1987: Objective analysis for numerical weather prediction. Short- and Medium-Range Numerical Weather Prediction, T. Matsuno, Ed. Meteorological Society of Japan, 11–59.

    Google Scholar 

  53. ——, K. Arpe, A. C. Lorenc, M. S. Tracton, G. Cats, S. Uppala and P. Kallberg, 1985: The response of numerical weather prediction systems to FGGE level II-b data. Part I. Analysis. Quart. J. Roy. Meteor. Soc., 111, 1–66.

    Article  Google Scholar 

  54. ——, D. B. Shaw, P. Lönnberg, L. Illari, K. Arpe and A. J. Simmons, 1986: Monitoring of observation quality by a data-assimilation system. Mon. Wea. Rev., 114, 861–879.

    Article  Google Scholar 

  55. Holopainen, E. O., N.-C. Lau and A. H. Oort, 1980: A diagnostic study of the time-averaged budget of atmospheric zonal momentum over North America. J. Atmos. Sci., 37, 2234–2242.

    Article  Google Scholar 

  56. Hoskins, B. J., and A. J. Simmons, 1975: A multi-layer spectral model and the semi-implicit method. Quart. J. Roy. Meteor. Soc., 101, 637–655.

    Article  Google Scholar 

  57. Imbard, M., A. Craplet, Pl. Degardin, Y. Durand, A. Joly, N. Marie and J.-F. Geleyn, 1988: Fine-mesh limited area forecasting with the French operational Peridot system. ECMWF Seminar on the Nature and Prediction of Extratropical Weather Systems, 7–11 September 1987, Vol. II, 231–270.

    Google Scholar 

  58. Jarraud, M., and A. J. Simmons, 1985: Development of the high-resolution model. ECMWF Tech. Memo. No. 107, 61 pp.

    Google Scholar 

  59. Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulation. Meteor. Monogr., 10, No. 32, 84 pp.

    Google Scholar 

  60. Krishnamurti, T. N., Y. Ramanathan, H. L. Pan, R. J. Pasch and J. Molinari, 1980: Cumulus parameterization and rainfall rate I. Mon. Wea. Rev., 108, 665–672.

    Article  Google Scholar 

  61. ——, K. Ingles, S. Cocke, T. Kitade and R. Pasch, 1983: Details of low latitude medium-range weather prediction using a global spectral model. II. Effects of orography and physical initialization. Florida State Univ. Rep. 83–11, 206 pp.

    Google Scholar 

  62. Kuo, H. L., 1974: Further studies of the parameterization of the influence of cumulus convection on large-scale flow. J. Atmos. Sci., 22, 40–63.

    Article  Google Scholar 

  63. Lange, A., and E. Hellsten, 1983: Results of the WMO/CAS NWP Data Study and Intercomparison Project for Forecasts for the Northern Hemisphere in 1981–82. WMO Short- and Medium-Range Weather Predict. Res., Publ. Ser. No. 2, World Meteorological Organization, Geneva, 30 pp., 68 figs. and Annex.

    Google Scholar 

  64. Lau, N.-C., 1981: Mid-latitude wintertime circulation anomalies appearing in a 15-year GCM experiment. Large-Scale Dynamical Processes in the Atmosphere, B. J. Hoskins and R. P. Pearce, Eds. Academic Press, 111–125.

    Google Scholar 

  65. Leith, C. E., 1978: Objective methods for weather prediction. Ann. Rev. Fluid Mech., 10, 107–128.

    Article  Google Scholar 

  66. ——, 1980: Nonlinear normal mode initialization and quasi-geostrophic theory. J. Atmos. Sci., 37, 958–968.

    Article  Google Scholar 

  67. Leith, C. E., 1983: Predictability in theory and practise. Large-Scale Dynamical Processes in the Atmosphere, B. J. Hoskins and R. P. Pearce. Eds. Academic Press. 365–383.

    Google Scholar 

  68. Lejenas, H., and H. Økland, 1983: Characteristics of Northern Hemisphere blocking as determined from a long time series of observational data. Tellus, 35A, 350–362.

    Article  Google Scholar 

  69. Lilly, D. K., 1972: Wave momentum flux. A GARP problem. Bull. Amer. Meteor. Soc., 53, 17–23.

    Article  Google Scholar 

  70. ——, J. M. Nicholls, R. M. Chervin, P. J. Kennedy and J. Klemp, 1982: Measurements of wave momentum flux over the Colorado Rocky Mountains. Quart. J. Roy. Meteor. Soc., 108, 625–642.

    Article  Google Scholar 

  71. Lorenc, A. C., 1981: A global three-dimensional, multivariate statistical interpolation scheme. Mon. Wea. Rev., 109, 701–721.

    Article  Google Scholar 

  72. Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7, 157–167.

    Article  Google Scholar 

  73. ——, 1982: Atmospheric predictability with a large numerical model. Tellus, 34, 505–513.

    Article  Google Scholar 

  74. Machenhauer, B., 1977: On the dynamics of gravity oscillations in a shallow-water model with application to normal mode initialization. Contr. Atmos. Phys., 50, 253–271.

    Google Scholar 

  75. ——, 1988: Objective analysis and numerical forecasting of an explosive deepening cyclone using preoperational HIRLAM systems. ECMWF Seminar on the Nature and Prediction of Extratropical Weather Systems, 7–11 September 1987, Vol. 2, 193–230.

    Google Scholar 

  76. Marchuk, G. I., 1974: Numerical Methods in Weather Prediction. Academic Press, 277 pp. (Russian edition, 1967).

    Google Scholar 

  77. McFarlane, N., C. Girard and D. W. Shantz, 1987: Reduction of systematic errors in NWP and general circulation models by parameterized gravity wave drag. Short and Medium-Range Numerical Weather Prediction, T. Matsuno, Ed. Meteorological Society of Japan, 713–728.

    Google Scholar 

  78. Miller, M. J., T. N. Palmer and R. Swinbank, 1989: Parametrization and influence of subgridscale orography in general circulation and numerical weather prediction models. Meteor. Atmos. Phys., 40, 84–109.

    Article  Google Scholar 

  79. Miyakoda, K., and J. Sirutis, 1977: Comparative integrations of global models with various parameterized processes of sub-grid-scale vertical transports: Description of the parameterizations. Contr. Atmos. Phys., 50, 445–487.

    Google Scholar 

  80. ——, and J. P. Chao, 1982: Essay on dynamical long-range forecasts of atmospheric circulation. J. Meteor. Soc. Japan, 60, 292–308.

    Article  Google Scholar 

  81. ——, G. D. Hembree, R. F. Strickler and I. Shulman, 1972: Cumulative results of extended forecast experiments. 1. Model performance for winter cases. Mon. Wea. Rev., 100, 836–855.

    Article  Google Scholar 

  82. Muller, E., D. Fruhwald, I. Jacobsen, A. Link, D. Majewski, J.-U. Schwirner and U. Wacher, 1987: Results and prospects of mesoscale modeling at the Deutscher Wetterdienst. Short-and Medium-Range Numerical Weather Prediction, T. Matsuno, Ed. Meteorological Society of Japan, 533–546.

    Google Scholar 

  83. Mureau, R., 1989: The decrease of the systematic error and increased predictability of the long waves in the ECMWF model. ECMWF Tech. Rep., to be published.

    Google Scholar 

  84. Namias, J., 1969: Seasonal interactions between the North Pacific Ocean and the atmosphere during the 1960’s. Mon. Wea. Rev., 97, 173–192.

    Article  Google Scholar 

  85. Orszag, S. A., 1970: Transform method for calculation of vector coupled sums: Application to the spectral form of the vorticity equation. J. Atmos. Sci., 27, 890–895.

    Article  Google Scholar 

  86. Palmer, T. N., 1988: Medium and extended range predictability and stability of the Pacific/North American mode. Quart. J. Roy. Meteor. Soc., 114, 691–713.

    Article  Google Scholar 

  87. ——, and S. Tibaldi, 1988: On the prediction of forecast skill. Mon. Wea. Rev., 116, 2453–2480.

    Article  Google Scholar 

  88. ——, G. J. Shutts and R. Swinbank, 1986: Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parameterization. Quart. J. Roy. Meteor. Soc., 112, 1001–1039.

    Article  Google Scholar 

  89. Petterssen, S., D. L. Bradbury and K. Pedersen, 1962: The Norwegian cyclone models in relation to heat and cold sources. Geofys. Publ., 24, 243–280.

    Google Scholar 

  90. Phillips, N. A., 1957: A coordinate system having some special advantages for numerical forecasting. J. Meteor., 14, 184–185.

    Article  Google Scholar 

  91. ——, 1973: Principles of large scale numerical weather prediction. Dynamical Meteorology, P. Morel, Ed. Reidel, 1–95.

    Google Scholar 

  92. Rex, D. F., 1950: Blocking action in the middle troposphere and its effect upon regional climate. II: The climatology of blocking actions. Tellus, 2, 275–302.

    Google Scholar 

  93. Richardson, L. F., 1922: Weather Prediction by Numerical Process. Cambridge University Press, 236 pp.

    Google Scholar 

  94. Ritchie, H., 1988: Application of the semi-Lagrangian method to a spectral model of the shallow water equations. Mon. Wea. Rev., 116, 1587–1598.

    Article  Google Scholar 

  95. Robert, A. J., 1969: The integration of a spectral model of the atmosphere by the implicit method. Proc. WMO/IUGG Symposium on Numerical Weather Prediction in Tokyo, 1968. Meteorological Society of Japan, vii-19–24.

    Google Scholar 

  96. ——, 1974: Computational resolution requirements for accurate medium-range numerical prediction. Difference and Spectral Methods for Atmosphere and Ocean Dynamics Problems. Proc. Symp. Novosibirsk, 1973, Part I, 82–102.

    Google Scholar 

  97. ——, 1982: A semi-Lagrangian and semi-implicit numerical integration scheme for the primitive meteorological equations. J. Meteor. Soc. Japan, 60, 319–.

    Article  Google Scholar 

  98. ——, J. Henderson and C. Turnbull, 1972: An implicit time integration scheme for baroclinic models of the atmosphere. Mon. Wea. Rev., 100, 329–335.

    Article  Google Scholar 

  99. ——, T.-L. Yee and H. Ritchie, 1985: A semi-Lagrangian and semi-implicit numerical integration scheme for multilevel atmospheric models. Mon. Wea. Rev., 113, 388–394.

    Article  Google Scholar 

  100. Sawyer, J. S., 1959: Introduction of the effects of topography into methods of numerical weather forecasting. Quart. J. Roy. Meteor. Soc., 85, 31–43.

    Article  Google Scholar 

  101. Shukla, J., 1984: Predictability of time averages. Problems and Prospects in Long and Medium-Range Weather Forecasting, D. M. Burridge and E. Kallen, Eds. Springer-Verlag, 109–206.

    Google Scholar 

  102. Simmons, A. J., and M. J. Miller, 1988: The prediction of extra-tropical weather systems—some sensitivity studies. ECMWF Seminar on the Nature and Prediction of Extratropical Weather Systems, 7–11 September 1987, Vol. II, 271–315.

    Google Scholar 

  103. ——, J. M. Wallace and G. W. Branstator, 1983: Barotropic wave propagation and instability, and atmospheric teleconnection patterns. J. Atmos. Sci., 40, 1363–1392.

    Article  Google Scholar 

  104. ——, D. M. Burridge, M. Jarraud, C. Girard and W. Wergen, 1989: The ECMWF medium-range prediction models. Development of the numerical formulations and the impact of increased resolution. Meteor. Atmos. Phys., 40, 28–60.

    Article  Google Scholar 

  105. Smagorinsky, J., 1953: The dynamical influences of large-scale heat sources and sinks on the quasi-stationary mean motions of the atmosphere. Quart. J. Roy. Meteor. Soc., 79, 342–366.

    Article  Google Scholar 

  106. ——, 1969: Problems and promises of deterministic extended-range forecasting. Bull. Amer. Meteor. Soc., 50, 286–311.

    Article  Google Scholar 

  107. Staniforth, A., and C. Temperton, 1986: Semi-implicit semi-Lagrangian integration schemes for barotropic finite-element regional models. Mon. Wea. Rev., 114, 2078–2090.

    Article  Google Scholar 

  108. Sundqvist, H., 1981: Prediction of stratiform clouds: results from a 5-day forecast with a global model. Tellus, 33, 242–253.

    Article  Google Scholar 

  109. Swinbank, R., 1985: The global atmospheric angular momentum balance inferred from analyses made during FGGE. Quart. J. Roy. Meteor. Soc., 111, 977–996.

    Article  Google Scholar 

  110. Temperton, C., and D. L. Williamson, 1979: Normal mode initialization for a multi-level gridpoint model. ECMWF Tech. Rep. No. 11, 91 pp.

    Google Scholar 

  111. Tibaldi, S., and F. Molteni, 1988: On the operational predictability of blocking. ECMWF Seminar on the Nature and Prediction of Extratropical Weather Systems, 7–11 September 1987 ECMWF, 329–371.

    Google Scholar 

  112. Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 1779–1800.

    Article  Google Scholar 

  113. ——, W. A. Heckley and J. Slingo, 1988: Tropical forecasting at ECMWF: The influence of physical parameterization on the mean structure of forecasts and analyses. Quart. J. Roy. Meteor. Soc., 114, 639–664.

    Article  Google Scholar 

  114. Tracton, M. S., 1988: Predictability and its relationship to cyclone/planetary scale interactions. Palmen Memorial Symposium on Extratropical Cyclones, Helsinki, oral presentation.

    Google Scholar 

  115. University of Stockholm, Staff members, Institute of Meteorology, 1954: Results of forecasting with the barotropic model on an electronic computer (BESK). Tellus, 6, 139–149.

    Google Scholar 

  116. Volmer, J.-P., M. Deque and M. Jarraud, 1983: Large-scale fluctuations in a long-range integration of the ECMWF spectral model. Tellus, 35, 173–178.

    Article  Google Scholar 

  117. Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784–812.

    Article  Google Scholar 

  118. ——, S. Tibaldi and A. J. Simmons, 1983: Reduction of systematic errors in the ECMWF model through the introduction of an envelope orography. Quart. J. Roy. Meteor. Soc., 109, 683–717.

    Article  Google Scholar 

  119. Wergen, W., 1987: Diabatic nonlinear normal mode initialization for a spectral model with a hybrid vertical coordinate. ECMWF Tech. Rep. No. 59.

    Google Scholar 

  120. Wiin-Nielsen, A., 1979: Steady states and stability properties of a low-order barotropic system with forcing and dissipation. Tellus, 31, 375–386.

    Article  Google Scholar 

  121. Wu, Q. X., and S. J. Chen, 1985: The effect of mechanical forcing on the formation of a mesoscale vortex. Quart. J. Roy. Meteor. Soc., 111, 1049–1070.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 American Meteorological Society

About this chapter

Cite this chapter

Bengtsson, L. (1990). Advances in Numerical Prediction of the Atmospheric Circulation in the Extratropics. In: Newton, C.W., Holopainen, E.O. (eds) Extratropical Cyclones. American Meteorological Society, Boston, MA. https://doi.org/10.1007/978-1-944970-33-8_11

Download citation

Publish with us

Policies and ethics