Skip to main content

Fronts, Jet Streams and the Tropopause

  • Chapter
Extratropical Cyclones

Abstract

The advent of kite and balloon-borne meteorograph soundings during the early 1900s and the subsequent deployment of regional rawinsonde networks provided the observational basis for the study of the spatial and temporal evolution of fronts, jet streams and the tropopause. During the mid-century years (1935–1965), researchers focused on the structural characteristics of fronts and their associated jet streams near the tropopause, and on the diagnosis of the frontogenetic processes and secondary circulations governing their life cycles. The pioneering observational study by J. Bjerknes and E. Palm n (1937) showed fronts to be transitional zones of finite width (~100 km) and depth (~1 km), rather than near zero-order discontinuities extending from the surface to the tropopause. Newton (1954) presented the most comprehensive diagnosis of all components of upper-level frontogenesis during this period, and Sawyer (1956) and Eliassen (1962) derived the diagnostic theory for geostrophically forced secondary circulations about fronts based on the semigeostrophic equations, which was later expanded to the temporal dimension by Hoskins (1971) and Hoskins and Bretherton (1972).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  • Abdullah, A. J., 1949: Cyclogenesis by a purely mechanical process. J. Meteor., 6, 86–97.

    Article  Google Scholar 

  • Anthes, R. A., and T. T. Warner, 1978: Development of hydrodynamic models suitable for air pollution and other mesometeorological studies. Mon. Wea. Rev., 106, 1045–1078.

    Article  Google Scholar 

  • ——, Y.-H. Kuo and J. R. Gyakum, 1983: Numerical simulations of a case of explosive marine cyclogenesis. Mon. Wea. Rev., 111, 1174–1188.

    Article  Google Scholar 

  • Bergeron, T., 1928: Über die dreidimensional verknüpfende Wetteranalyse (I). Geofys. Publ., 5, No. 6, 1–111.

    Google Scholar 

  • ——, 1959: Methods in scientific weather analysis and forecasting. An outline in the history of ideas and hints at a program. The Atmosphere and the Sea in Motion, B. Bolin, Ed. Rockefeller Institute Press, 440–474.

    Google Scholar 

  • Berggren, R., 1952: The distribution of temperature and wind connected with active tropical air in the higher troposphere and some remarks concerning clear air turbulence at high altitude. Tellus, 4, 43–53.

    Google Scholar 

  • Bjerknes, J., 1919: On the structure of moving cyclones. Geofys. Publ., 1, No. 1, 1–8.

    Google Scholar 

  • ——, 1932: Exploration des perturbations atmosphèriques a l’aide de sondages rapproches dans le temps. Geofys. Publ., 9, No. 9, 1–52.

    Google Scholar 

  • ——, and E. Palmén, 1937: Investigations of selected European cyclones by means of serial ascents. Geofys. Publ., 12, No. 2, 1–62.

    Google Scholar 

  • ——, and H. Solberg, 1921: Meteorological conditions for the formation of rain. Geofys. Publ., 2, No. 3, 1–60.

    Google Scholar 

  • ——, and ——, 1922: Life cycle of cyclones and the polar front theory of atmospheric circulation. Geofys. Publ., 3, No. 1, 1–18.

    Google Scholar 

  • Bosart, L. F., 1970: Mid-tropospheric frontogenesis. Quart. J. Roy. Meteor. Soc., 96, 442–471.

    Article  Google Scholar 

  • Browning, K. A., and T. W. Harrold, 1970: Air motion and precipitation growth at a cold front. Quart. J. Roy. Meteor. Soc., 96, 369–389.

    Article  Google Scholar 

  • Carbone, R. E., 1982: A severe frontal rainband. Part I: Stormwide hydrodynamic structure. J. Atmos. Sci., 39, 258–279.

    Article  Google Scholar 

  • Carlson, T. N., and F. H. Ludlam, 1968: Conditions for the occurrence of severe local storms. Tellus, 20, 203–226.

    Article  Google Scholar 

  • ——, S. G. Benjamin, G. S. Forbes and Y. F. Li, 1983: Elevated mixed layers in the regional severe storm environment: Conceptual model and case studies. Mon. Wea. Rev., 111, 1453–1473.

    Article  Google Scholar 

  • Charba, J., 1974: Application of gravity current model to analysis of squall-line gust front. Mon. Wea. Rev., 102, 140–156.

    Article  Google Scholar 

  • Defant, F, and H. Taba, 1957: The threefold structure of the atmosphere and the characteristics of the tropopause. Tellus, 9, 259–274.

    Article  Google Scholar 

  • Dirks, R. A., J. P. Kuettner and J. A. Moore, 1988: Genesis of Atlantic Lows Experiment (GALE): An overview. Bull. Amer. Meteor. Soc., 69, 148–160.

    Article  Google Scholar 

  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1, No. 3, 33–52.

    Article  Google Scholar 

  • Edelmann, W., 1963: On the behavior of disturbances in a baroclinic channel. Summary Rep. No. 2, Research in Objective Weather Forecasting, Part F, Contract No. AF61 (052)-373, Research Division, Deutscher Wetterdienst, Offenbach, 35 pp.

    Google Scholar 

  • Eliassen, A., 1952: Slow thermally or frictionally controlled meridional circulations in a circular vortex. Astrophys. Norv., 5, No. 2, 60 pp.

    Google Scholar 

  • ——, 1959: On the formation of fronts in the atmosphere. The Atmosphere and the Sea in Motion, B. Bolin, Ed. Rockefeller Institute Press, 277–287.

    Google Scholar 

  • ——, 1962: On the vertical circulation in frontal zones. Geofys. Publ., 24, No. 4, 147–160.

    Google Scholar 

  • ——, and E. Raustein, 1968: A numerical integration experiment with a model atmosphere based on isentropic surfaces. Meteor. Ann., 5, 45–63.

    Google Scholar 

  • Freeman, J. C., Jr., 1948: An analogy between equatorial easterlies and supersonic gas flow. J. Meteor., 5, 138–146.

    Article  Google Scholar 

  • Fujita, T., 1955: Results of detailed synoptic studies of squall lines. Tellus, 7, 405–436.

    Article  Google Scholar 

  • Gall, R. L., R. T. Williams and T. L. Clark, 1987: On the minimum scale of surface fronts. J. Atmos. Sci., 44, 2562–2574.

    Article  Google Scholar 

  • ——, —— and ——, 1988: Gravity waves generated during frontogenesis. J. Atmos. Sci., 45, 2204–2219.

    Article  Google Scholar 

  • Gidel, L. T., and M. A. Shapiro, 1979: The role of clear air turbulence in the production of potential vorticity in the vicinity of upper tropospheric jet stream-frontal systems. J. Atmos. Sci., 36, 2125–2138.

    Article  Google Scholar 

  • Goff, R. C., 1976: Vertical structure of thunderstorm outflows. Mon. Wea. Rev., 104, 1429–1440.

    Article  Google Scholar 

  • Gyakum, J. R., 1983a: On the evolution of the QE II storm. I: Synoptic aspects. Mon. Wea. Rev., 111, 1137–1155.

    Article  Google Scholar 

  • ——, 1983b: On the evolution of the QE II storm. II: Dynamic and thermodynamic structure. Mon. Wea. Rev., 111, 1156–1173.

    Article  Google Scholar 

  • Hadlock, R., and C. W. Kreitzberg, 1988: The experiment on rapidly intensifying cyclones over the Atlantic (ERICA) field study: Objectives and plans. Bull. Amer. Meteor. Soc., 69, 1309–1320.

    Article  Google Scholar 

  • Hobbs, P. V., and P. O. G. Persson, 1982: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. Part V: The substructure of narrow cold-frontal rainbands. J. Atmos. Sci., 39, 280–295.

    Article  Google Scholar 

  • Hoskins, B. J., 1971: Atmospheric frontogenesis models: Some solutions. Quart. J. Roy. Meteor. Soc., 97, 139–153.

    Article  Google Scholar 

  • ——, 1976: Baroclinic waves and frontogenesis. Part I: Introduction and Eady waves. Quart. J. Roy. Meteor. Soc., 102, 103–122.

    Article  Google Scholar 

  • ——, and F. P. Bretherton, 1972: Atmospheric frontogenesis models: Mathematical formulation and solution. J. Atmos. Sci., 29, 11–37.

    Article  Google Scholar 

  • ——, and W. A. Heckley, 1981: Cold and warm fronts in baroclinic waves. Quart. J. Roy. Meteor. Soc., 107, 79–90.

    Article  Google Scholar 

  • ——, and N. V. West, 1979: Baroclinic waves and frontogenesis. Part II. Uniform potential vorticity jet flows—cold and warm fronts. J. Atmos. Sci., 36, 1663–1680.

    Article  Google Scholar 

  • Keyser, D., and R. A. Anthes, 1982: The influence of planetary boundary layer physics on frontal structure in the Hoskins-Bretherton horizontal shear model. J. Atmos. Sci., 39, 1783–1802.

    Article  Google Scholar 

  • ——, and M. J. Pecnick, 1985a: A two-dimensional primitive equation model of frontogenesis forced by confluence and horizontal shear. J. Atmos. Sci., 42, 1259–1282.

    Article  Google Scholar 

  • ——, and ——, 1985b: Diagnosis of ageostrophic circulations in a two-dimensional primitive equation model of frontogenesis. J. Atmos. Sci., 42, 1283–1305.

    Article  Google Scholar 

  • ——, and M. A. Shapiro, 1986: A review of the structure and dynamics of upper-level frontal zones. Mon. Wea. Rev., 114, 452–499

    Article  Google Scholar 

  • ——, and L. W. Uccellini, 1987: Regional models: Emerging research tools for synoptic meteorologists. Bull. Amer. Meteor. Soc., 68, 306–320.

    Article  Google Scholar 

  • ——, M. A. Shapiro and D. J. Perkey, 1978: An examination of frontal structure in a fine-mesh primitive equation model for numerical weather prediction. Mon. Wea. Rev., 106, 1112–1124

    Article  Google Scholar 

  • ——, M. J. Pecnick and M. A. Shapiro, 1986: Diagnosis of the role of vertical deformation in a two-dimensional primitive equation model of upper-level frontogenesis. J. Atmos. Sci., 43, 839–850.

    Article  Google Scholar 

  • Kleinschmidt, E., Jr., 1951: Grundlagen einer Theorie der tropischen Zyldonen. Arch. Meteor. Geophys. Bioklim., A4, 53–72.

    Article  Google Scholar 

  • Koch, S. E., 1984: The role of an apparent mesoscale frontogenetic circulation in squall line initiation. Mon. Wea. Rev., 112, 2090–2111.

    Article  Google Scholar 

  • Kuo, Y.-H., and R. J. Reed, 1988: Numerical simulation of an explosively deepening cyclone in the eastern Pacific. Mon. Wea. Rev., 116, 2081–2105.

    Article  Google Scholar 

  • ——, M. A. Shapiro and E. G. Donall, 1990: Interaction of baroclinic and diabatic processes in numerical simulations of a rapidly developing marine cyclone. Mon. Wea. Rev., submitted.

    Google Scholar 

  • Kutzbach, G., 1979: The Thermal Theory of Cyclones: A History of Meteorological Thought in the Nineteenth Century. American Meteorological Society, 255 pp.

    Google Scholar 

  • Margules, M., 1906: Über temperaturschichtung in stationär bewegter und ruhender luft. Hann-Band. Meteor. Zeits., 2, 245–254.

    Google Scholar 

  • Matthews, D. A., 1981: Observation of a cloud arc triggered by thunderstorm outflow. Mon. Wea. Rev., 109, 2140–2157.

    Article  Google Scholar 

  • Miller, J. E., 1948: On the concept of frontogenesis. J. Meteor., 5, 169–171.

    Article  Google Scholar 

  • Mudrick, S. E., 1974: A numerical study of frontogenesis. J. Atmos. Sci., 31, 869–892.

    Article  Google Scholar 

  • Namias, J., and P. F. Clapp, 1949: Confluence theory of the high tropospheric jet stream. J. Meteor., 6, 330–336.

    Article  Google Scholar 

  • Neiman, P. J., M. A. Shapiro, E. G. Donall and C. W. Kreitzberg, 1990: The diabatic modification of an extratropical marine cyclone warm sector by cold underlying water. Mon. Wea. Rev., 118, in press.

    Google Scholar 

  • Newton, C. W., 1950: Structure and mechanism of the prefrontal squall line. J. Meteor., 7, 210–222.

    Article  Google Scholar 

  • ——, 1954: Frontogenesis and frontolysis as a three-dimensional process. J. Meteor., 11, 449–461.

    Article  Google Scholar 

  • ——, and A. Trevisan, 1984a: Clinogenesis and frontogenesis in jet-stream waves. Part I: Analytical relations to wave structure. J. Atmos. Sci., 41, 2717–2734.

    Article  Google Scholar 

  • ——, and ——, 1984b: Clinogenesis and frontogenesis in jetstream waves. Part II: Channel model numerical experiments. J. Atmos. Sci., 41, 2735–2755.

    Article  Google Scholar 

  • Nyberg, A., and E. Palmén, 1942: Synoptische-aerologische Bearbeitung der internationalen Registrierballonaufstiege in Europa in der Zeit 17–19 Oktober 1935. Statens Meteorol.-Hydrol. Anstalt, Medd., Ser. Uppsater No. 40, 1–43.

    Google Scholar 

  • Orlanski, I., B. Ross, L. Polinsky and R. Shaginaw, 1985: Advances in the theory of atmospheric fronts. Advances in Geophysics, 28B, 223–252.

    Article  Google Scholar 

  • Palmén, E., 1933: Aerologische Untersuchungen der atmosphärischen Störungen mit besonderer Berüchsichtigung der stratosphärischen Vorgänge. Soc. Sci. Fenn., Comm. Phys.-Math., 7, No. 5, 65 pp.

    Google Scholar 

  • ——, 1948: On the distribution of temperature and wind in the upper westerlies. J. Meteor., 5, 20–27.

    Article  Google Scholar 

  • ——, 1951: The role of atmospheric disturbances in the general circulation. Quart. J. Roy. Meteor. Soc., 77, 337–354.

    Article  Google Scholar 

  • ——, and C. W. Newton, 1969: Atmospheric Circulation Systems. Their Structure and Physical Interpretation. Academic Press, 603 pp.

    Google Scholar 

  • Petterssen, S., 1936: Contribution to the theory of frontogenesis. Geofys. Publ., 11, No. 6, 1–27.

    Google Scholar 

  • Reed, R. J., 1955: A study of a characteristic type of upper-level frontogenesis. J. Meteor., 12, 226–237.

    Article  Google Scholar 

  • ——, and E. F. Danielsen, 1959: Fronts in the vicinity of the tropopause. Arch. Meteor. Geophys. Bioklim., A11, 1–17.

    Google Scholar 

  • ——, and F. Sanders, 1953: An investigation of the development of a mid-tropospheric frontal zone and its associated vorticity field. J. Meteor., 10, 338–349.

    Article  Google Scholar 

  • Reeder, M. J., 1986: The interaction of a surface cold front with a prefrontal thermodynamically well-mixed boundary layer. Austral. Meteor. Mag., 34, 137–148.

    Google Scholar 

  • ——, and D. Keyser, 1988: Balanced and unbalanced upper-level frontogenesis. J. Atmos. Sci., 45, 3366–3386.

    Article  Google Scholar 

  • Reiter, E. R., 1975: Stratospheric-tropospheric exchange processes. Rev. Geophys. Space Phys., 13, 459–474.

    Article  Google Scholar 

  • Sanders, F., 1955: An investigation of the structure and dynamics of an intense surface frontal zone. J. Meteor., 12, 542–552.

    Article  Google Scholar 

  • Sawyer, J. S., 1956: The vertical circulation at meteorological fronts and its relation to frontogenesis. Proc. Roy. Soc. London, A234, 346–362.

    Article  Google Scholar 

  • Schär, C. J., 1989: Dynamische Aspekte der aussertropischen Zyklogenese, Theorie und numerische Simulation im Limit der balancierten Stromungssysteme. Dissertation Nr. 8845 der Eidgenossischen Technischen Hochschule, Zurich, 241 pp.

    Google Scholar 

  • Shapiro, M. A., 1970: On the applicability of the geostrophic approximation to upper-level frontal-scale motions. J. Atmos. Sci., 27, 408–420.

    Article  Google Scholar 

  • ——, 1974: A multiple structured frontal zone-jet stream system as revealed by meteorologically instrumented aircraft. Mon. Wea. Rev., 102, 244–253.

    Article  Google Scholar 

  • ——, 1975: Simulation of upper-level frontogenesis with a 20-level isentropic coordinate primitive equation model. Mon. Wea. Rev., 103, 591–604.

    Article  Google Scholar 

  • ——, 1976: The role of turbulent heat flux in the generation of potential vorticity in the vicinity of upper-level jet stream systems. Mon. Wea. Rev., 104, 892–906.

    Article  Google Scholar 

  • ——, 1978: Further evidence of the mesoscale and turbulent structure of upper level jet stream-frontal zone systems. Mon. Wea. Rev., 106, 1100–1111.

    Article  Google Scholar 

  • ——, 1980: Turbulent mixing within tropopause folds as a mechanism for the exchange of chemical constituents between the stratosphere and troposphere. J. Atmos. Sci., 37, 994–1004.

    Article  Google Scholar 

  • ——, 1981: Frontogenesis and geostrophically forced secondary circulations in the vicinity of jet stream-frontal zone systems. J. Atmos. Sci., 38, 954–973.

    Article  Google Scholar 

  • ——, 1982: Mesoscale weather systems of the central United States. CIRES/NOAA Tech. Rep., University of Colorado, 78 pp.

    Google Scholar 

  • ——, 1984: Meteorological tower measurements of a surface cold front. Mon. Wea. Rev., 112, 1634–1639.

    Article  Google Scholar 

  • ——, 1985: Dropwindsonde observations of an Icelandic low and a Greenland mountain-lee wave. Mon. Wea. Rev., 113, 680–683.

    Article  Google Scholar 

  • ——, E. R. Reiter, R. D. Cadle and W. A. Sedlacek, 1980: Vertical mass- and trace-constituent transports in the vicinity of jet streams. Arch. Meteor. Geophys. Bioklim., B28, 193–206.

    Article  Google Scholar 

  • ——, T. Hampel, D. Rotzoll and F. Mosher, 1985: The frontal hydraulic head: A micro-α scale (~1 km) triggering mechanism for mesoconvective weather systems. Mon. Wea. Rev., 113, 1166–1183.

    Article  Google Scholar 

  • ——, —— and A. J. Krueger, 1987: The arctic tropopause fold. Mon. Wea. Rev., 115, 444–454.

    Article  Google Scholar 

  • Simpson, J. E., D. A. Mansfield and J. R. Milford, 1977: Inland penetration of sea-breeze fronts. Quart. J. Roy. Meteor. Soc., 103, 47–76.

    Article  Google Scholar 

  • Tepper, M., 1950: A proposed mechanism of squall lines: The pressure jump line. J. Meteor., 7, 21–29.

    Article  Google Scholar 

  • Uccellini, L. W., 1986: The possible influence of upstream upper-level baroclinic processes on the development of the QE II storm. Mon. Wea. Rev., 114, 1019–1027.

    Article  Google Scholar 

  • Wakimoto, R. M., 1982: Investigations of thunderstorm gust fronts with the use of radar and rawinsonde data. Mon. Wea. Rev., 110, 1060–1082.

    Article  Google Scholar 

  • Whitaker, J. S., L. W. Uccellini and K. F. Brill, 1988: A model-based diagnostic study of the rapid development phase of the Presidents’ Day cyclone. Mon. Wea. Rev., 116, 2337–2365.

    Article  Google Scholar 

  • Williams, R. T., 1967: Atmospheric frontogenesis: A numerical experiment. J. Atmos. Sci., 24, 627–641.

    Article  Google Scholar 

  • ——, 1972: Quasi-geostrophic versus non-geostrophic frontogenesis. J. Atmos. Sci., 29, 3–10.

    Article  Google Scholar 

  • ——, 1974: Numerical simulation of steady-state fronts. J. Atmos. Sci., 31, 1286–1296.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 American Meteorological Society

About this chapter

Cite this chapter

Shapiro, M.A., Keyser, D. (1990). Fronts, Jet Streams and the Tropopause. In: Newton, C.W., Holopainen, E.O. (eds) Extratropical Cyclones. American Meteorological Society, Boston, MA. https://doi.org/10.1007/978-1-944970-33-8_10

Download citation

Publish with us

Policies and ethics