Skip to main content

Evolution of Satellite Observations in the United States and Their Use in Meteorology

  • Chapter

Abstract

In his keynote address celebrating the 25th anniversary of the launch of TIROS-1 at the Second International Satellite Direct Broadcast Services Users’ Conference in April 1985, G.O.P. Obasi, secretary-general of the World Meteorological Organization (WMO), remarked:

We can marvel at the many significant technological developments which have taken place in meteorological satellites since 1 April 1960 … We need to express our gratitude that the countries now operating meteorological satellites recognized TIROS as only the first step and followed up, through generations of improved satellites, to the current global network.

Every day, over 120 countries use information from this network of geostationary and polar-orbiting meteorological satellites. Never before has a technology developed so rapidly to become so essential to so many national weather services. The development of Automatic Picture Transmission (APT) was the prime catalyst in focusing the world’s attention on what satellites could do in improving meteorological services.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   36.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler, R.F., and D.D. Fenn, 1979: Thunderstorm intensity as determined from satellite data. J. Appl. Meteor., 18, 502–517.

    Article  Google Scholar 

  • Adler, R.F., and A.J. Negri, 1981: A satellite technique to estimate tropical convective and stratiform rainfall. J. Appl. Meteor., 27, 30–51.

    Article  Google Scholar 

  • Allison, L.J., R. Wexler, C. Laughlin, and W. Bandeen, 1977: Remote sensing of the atmosphere from environmental satellites. X-90177–132 Preprint, Goddard Space Flight Center, Greenbelt, MD, 111 pp.

    Google Scholar 

  • Allison, L.J., A. Schnapf, B.C. Diesen III, P.S. Martin, A. Schwalb, and W.R. Bandeen, Eds., 1980: Meteorological satellites. NASA TM 80704, Goddard Space Flight Center, MD, 71 pp.

    Google Scholar 

  • Anderson, R.K. 1974: Application of meteorological satellite data in weather analysis and forecasting. Tech. Note 124, WMO No. 333, World Meteorological Organization, Geneva, Switzerland, 275 pp.

    Google Scholar 

  • Barrett, E.C., G. D’Souza, and C.H. Power, 1986: Bristol techniques for the use of satellite data in rain cloud and rainfall monitoring. J. Brit. Interplan. Soc., 39, 517–526.

    Google Scholar 

  • Bristor, C.L., and W. Pichel, 1974: Three-D cloud viewing using overlapping pictures from two geostationary satellites. Bull. Amer. Meteor. Soc., 55, 1353–1355.

    Google Scholar 

  • Browning, K.A., 1982: Nowcasting. Academic Press, 256 pp.

    Google Scholar 

  • Chedin, A., Ed., 1989: Tech. Proc. of the Fifth Int. TOVS Study Conf., Toulouse, France, 445 pp.

    Google Scholar 

  • Chesters, D., W.D. Robinson, and L.W. Uccellini, 1987: Optimized retrievals of precipitable water from the VAS split window. J. Climate Appl. Meteor., 26, 1059–1066.

    Article  Google Scholar 

  • CIMSS, 1995: Introducing the GOES-8 sounder. [Available on-line from http://cloud.ssec.wisc.edu/sounder/g8.html.]

  • CIRA, 1994: Introduction to GOES-8. [Available on-line from http://www.cira.colostate.edu.RAMM.overview.]

  • COMET, 1992: Boundary Layer Detection and Convective Initiation module. University Corporation for Atmospheric Research, laser disc.

    Google Scholar 

  • COMET, 1995: Introduction to GOES-819: Computer Based Learning Module. University Corporation for Atmospheric Research, CD-ROM.

    Google Scholar 

  • Crowson, D.L., 1949: Cloud observations from rockets. Bull. Amer. Meteor. Soc., 30, 17–22.

    Google Scholar 

  • Dvorak, V.F., 1972: A technique for the analysis and forecasting of tropical cyclone intensities from satellite pictures. NOAA TM NESS 36, U.S. Dept. of Commerce, Washington, DC, 15 pp.

    Google Scholar 

  • Dvorak, V.F., 1984: Tropical cyclone intensity analysis using satellite data. NOAA Tech. Rep. NESDIS 11, Washington, DC, 47 pp.

    Google Scholar 

  • Dvorak, V.F., and S. Wright, 1977: Tropical cyclone intensity analysis using enhanced infrared satellite data. Proc. 11th Technical Conf on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 268–273.

    Google Scholar 

  • Ellrod G., 1992: Potential applications of GOES-I 3.9 gm infrared imagery. Sixth Conf. on Satellite Meteorology and Oceonography, Atlanta, GA, Amer. Meteor. Soc., 184–187.

    Google Scholar 

  • Eyre, J.R., 1984: Detection of fog at night using Advanced Very High Resolution Radiometer Imagery (AVHRR). Meteor. Mag., 113, 266–271.

    Google Scholar 

  • Follansbee, W.A., 1973: Estimation of average daily rainfall from satellite cloud photographs. NOAA Tech. Memo. NESS 44, Dept. of Commerce, Washington, DC, 39 pp.

    Google Scholar 

  • Friday, E.W., Jr., 1989: The National Weather Service forecast and warning program outlook. GOES I-M Operational Satellite Conf., Arlington, VA, NOAA, 110–125.

    Google Scholar 

  • Fujita, T.T., 1978: Manual of downburst identification for project Nimrod. SMRP 156, University of Chicago, 104 pp.

    Google Scholar 

  • Fujita, T.T., 1982: Infrared, stereo, cloud motion, and radar-echo analysis of SESAME-day thunderstorms. 12th Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 213–216.

    Google Scholar 

  • Fuller, J.F., 1990: Thor’s Legions. Amer. Meteor. Soc., 381 pp.

    Google Scholar 

  • Gomberg, L., and S.M. McElroy, 1985: Remote sensing of the earth with the Defense Meteorological Satellite. Monitoring Earth’s Ocean, Land, and Atmosphere from Space—Sensor, Systems, and Applications, A. Schnapf, Ed., American Institute of Aeronautics and Astronautics, 96–128.

    Google Scholar 

  • Greenfield, S.W., and W.W. Kellogg, 1951: Inquiry into the feasibility of weather reconnaissance from a satellite vehicle. USAF Project RAND Rep. R-218, 43 pp. [Unclassified edition, 1960: Rep. N-365.]

    Google Scholar 

  • Griffith, C.G., W.L. Woodley, P.G. Grube, D.W. Martin, J. Stout, and D.N. Sikdar, 1978: Rain estimates from geosynchronous satellite imagery: visible and infrared studies. Mon. Wea. Rev., 106, 1153–1171.

    Article  Google Scholar 

  • Gruber, A., 1977: Determination of the earth–atmosphere radiation budget from NOAA satellite data. NOAA Tech. Rep. NESS 76, Department of Commerce, Washington, DC, 28 pp.

    Google Scholar 

  • Gurka, J.J., 1978: The role of inward mixing in the dissipation of fog and stratus. Mon. Wea. Rev., 106, 1633–1635.

    Article  Google Scholar 

  • Hallgren, R.E., 1985: Welcome from AMS. Second Int. Satellite Direct Broadcast Services Users’ Conf., Baltimore, MD, U.S. Dept. of Commerce, 14–15.

    Google Scholar 

  • Hanel, R.A., B. Schlachman, F.D. Clark, C.H. Prokesh, J.B. Taylor, W.M. Wilson, and L. Chaney, 1970: The NIMBUS-3 Michelson Interferometer. Appl. Opt., 9, 1767–1773.

    Article  Google Scholar 

  • Hasler, A.F., 1981: Stereographic observations from geosynchronous satellites: An important new tool for the atmospheric sciences. Bull. Amer. Meteor. Soc., 62, 194–212.

    Article  Google Scholar 

  • Hass, I.S., and R. Shapiro, 1982: The NIMBUS satellite system—Remote sensing Ramp;D platform of the 70s. NASA Conf. Publ. 2227, 17–30.

    Google Scholar 

  • Heymsfield, G.M., G. Szejwach, S. Scholtz, and H. Blackmer, 1983: Upper-tropospheric structure of Oklahoma tornadic storms on 2 May 1979. Part II: Proposed explanation of “V” pattern and internal warm region in infrared observations. J. Atmos. Sci., 40, 1739–1755.

    Google Scholar 

  • Holmlund, K., 1993: Operational water vapor wind vectors from Meteosat imagery data. Second Int. Wind Workshop, Tokyo, Japan, EUMETSAT, 77–84.

    Google Scholar 

  • Hubert, L.F., and P.E. Lehr, 1967: Weather Satellites. Blaisdell Publishing, 120 pp.

    Google Scholar 

  • Hubert, L.F., F. and L.F. Whitney Jr., 1971: Wind estimation from geostationary-satellite pictures. Mon. Wea. Rev., 99, 665–672.

    Article  Google Scholar 

  • Isaacs, R.G., R.N. Hoffman, and L.D. Kaplan, 1986: Satellite remote sensing of meteorological parameters for global numerical weather prediction. Rev. Geophys., 24, 701–743.

    Article  Google Scholar 

  • Jedlovec, G.J., 1985: An evaluation and comparison of vertical profile data from the VISSR Atmospheric Sounder (VAS). J. Atmos. Oceanic Technol., 2, 559–581.

    Article  Google Scholar 

  • Johnson, D.S., 1982: Development of the operational program for satellite meteorology. NASA Conf. Publ. 2257, 34–40.

    Google Scholar 

  • Johnson, D.S., 1994: Evolution of the U.S. meteorological satellite program: 1994 Verner E. Suomi Lecture. Bull. Amer. Meteor. Soc., 75, 1705–1708.

    Google Scholar 

  • Kaplan, L.D., 1959: Inferences of atmospheric structures from satellite remote radiation measurements. J. Opt. Soc. Amer., 49, 1004–1014.

    Article  Google Scholar 

  • Kellogg, W.W., 1966: Satellite meteorology and the academic community. Satellite data in meteorological research. NCAR-TN-11, National Center For Atmospheric Research, Boulder, CO, 5–14.

    Google Scholar 

  • Kidder, S.Q., and T.H. Vonder Haar, 1995: Satellite Meteorology An Introduction. Academic Press.

    Google Scholar 

  • Kidder, S.Q., W.M. Gray, and T.H. Vonder Haar, 1978: Estimating tropical cyclone central pressure and outer winds from satellite microwave data. Mon. Wea. Rev., 106, 1458–1464.

    Article  Google Scholar 

  • King, J.I.F., 1958: The radiative heat transfer of planet earth. Scientific Uses of Earth Satellites, J.A. van Allen, Ed., University of Michigan Press, 316 pp.

    Google Scholar 

  • LeMarshall, J.F., 1988: An intercomparison of temperature and moisture fields derived from TOVS data by different techniques. Part I: Basic statistics. J. Appl. Meteor., 27, 1011–1030.

    Google Scholar 

  • Maddox, R., 1980: Mesoscale convective complexes. Bull. Amer. Meteor. Soc., 61, 1374–1387.

    Article  Google Scholar 

  • Matson, M., and J. Dozier, 1981: Identification of subresolution high temperature sources using a thermal IR sensor. Photogramm. Eng. Remote Sensing, 47, 1311–1318.

    Google Scholar 

  • Matson, M., E.P. McClain, D.F. McGinnis Jr., and J.A. Pritchard, 1978: Satellite detection of urban heat islands. Mon. Wea. Rev., 106, 1725–1734.

    Article  Google Scholar 

  • McClain, E.P., W.G. Pichel, and C.C. Walton, 1985: Comparative performance of AVHRR based multichannel sea surface temperatures. J. Geophys. Res., 89 (C6), 11 587–11 601.

    Google Scholar 

  • Menzel, W.P., and A. Chedin, 1990: Summary of the Fifth International TOVS Study Conference. Bull. Amer. Meteor. Soc., 71, 691–693.

    Google Scholar 

  • Menzel, W.P., and J.F.W. Purdom, 1994: Introducing GOES-I: The first of a new generation of Geostationary Operational Environmental Satellites. Bull. Amer. Meteor. Soc., 75, 757–781.

    Article  Google Scholar 

  • Merrill, R.T., W.P. Menzel, W. Baker, J. Lynch, and E. Legg, 1991: A report on the recent demonstration of NOAA’s upgraded capability to derive satellite cloud motion winds. Bull. Amer. Meteor. Soc., 72, 372–376.

    Google Scholar 

  • Meyers, W.D., 1985: The Defense Meteorological Satellite Program: A review of its impact. Monitoring Earth’s Ocean, Land, and Atmosphere from Space—Sensor, Systems, and Applications, A. Schnapf, Ed., American Institute of Aeronautics and Astronautics, 129–149.

    Google Scholar 

  • Nagel, R., and C.M. Hayden, 1971: The use of satellite-observed cloud patterns in Northern Hemisphere 500-mb numerical analysis. NOAA Tech. Rep. NESS 55, Dept. of Commerce, Washington, DC, 55 pp.

    Google Scholar 

  • Nieman, S.A., J. Schmetz, and W.P. Menzel, 1992: A comparison of several techniques to assign heights to cloud tracers. J. Appl. Meteor., 32, 1559–1568.

    Article  Google Scholar 

  • NOAA, 1984: The March 28 1984 Carolina tornado outbreak. Disaster survey report to the administrator. NOAA, U.S. Dept. of Commerce, Washington, DC, 48 pp.

    Google Scholar 

  • Obasi, G.O.P., 1985: Keynote address. Second Int. Satellite Direct Broadcast Services Users’ Conf, Baltimore, MD, U.S. Dept. of Commerce, 16–21.

    Google Scholar 

  • Oliver, V.J., and E.W. Ferguson, 1966: The use of satellite data in weather analysis. Satellite Data in Meteorological Research, NCAR-TN-11, National Center For Atmospheric Research, Boulder, CO, 349 pp.

    Google Scholar 

  • Oliver, V.J., R.K. Anderson, and E.W. Ferguson, 1964: Some examples of detection of jet streams from TIROS photographs. Mon. Wea. Rev., 92, 441–448.

    Article  Google Scholar 

  • Ostby, F., 1995: Presentation at the GOES-J prelaunch press conference at Kennedy Space Flight Center. NASA, audio/videocassette. [Available from NASA KSC Press Office, Kennedy Space Center, FL 32815.]

    Google Scholar 

  • Pielke, R.A., 1987: The challenge of using mesoscale data in mesoscale models. Symp. Mesoscale Analysis and Forecasting, Vancouver, BC, Canada, ESA, 651–652.

    Google Scholar 

  • Popham, R., 1985: Setting the stage, the direct broadcast community: who, what, and where. Second Int. Satellite Direct Broadcast Services Users’ Conf, Baltimore, MD, U.S. Dept. of Commerce, 22–23.

    Google Scholar 

  • Prins, E.P., and W.P. Menzel, 1994: Trends in South American biomass burning detected with the GOES-VAS from 1983–1991. J. Geophys. Rev., 99, 16 719–16 735.

    Article  Google Scholar 

  • Purdom, J.F.W., 1976: Some uses of high resolution GOES imagery in the mesoscale forecasting of convection and its behavior. Mon. Wea. Rev., 104, 1474–1483.

    Article  Google Scholar 

  • Purdom, J.F.W., 1982: Integration of research aircraft data and 3 minute interval GOES data to study the genesis and development of deep convective storms. Preprints, 12th Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 269–271.

    Google Scholar 

  • Purdom, J.F.W., 1985: The application of satellite sounding and image data to the Carolina tornado outbreak of 28 March 1984. Preprints, 14th Conf on Severe Local Storms, Indianapolis, IN, Amer. Meteor. Soc., 276–279.

    Google Scholar 

  • Purdom, J.F.W., 1993: Satellite observations of tornadic thunderstorms. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., No. 79, Amer. Geophys. Union, 265–274.

    Chapter  Google Scholar 

  • Purdom, J.F.W., 1995: Observations of thunderstorms and hurricanes using one-minute interval GOES-8 imagery. Abstracts, Week B, International Union of Geodesy and Geophysics, XXI General Assembly, Boulder, CO, Amer. Geophys. Union, Washington, DC, B286.

    Google Scholar 

  • Purdom, J.F.W., and J.G. Gurka, 1974: The effect of early morning cloud cover on afternoon thunderstorm development. Preprints, Fifth Conf. on Weather Forecasts and Analysis, St. Louis, MO, Amer. Meteor. Soc., 58–60.

    Google Scholar 

  • Purdom, J.F.W., and P.N. Dills, 1993: Cloud motion and height measurements from multiple satellites including cloud heights and motions in polar regions. Second Int. Wind Workshop, Tokyo, Japan, EUMETSAT, 245–248.

    Google Scholar 

  • Rasmussen, E.A., and J.F.W. Purdom, 1992: Investigation of a polar low using geostationary satellite data. Preprints, Sixth Conf. on Satellite Meteorology and Oceanography, Atlanta, GA, Amer. Meteor. Soc., 120–122.

    Google Scholar 

  • Rao, C.R.N., L.L. Stowe, E.P. McClain, and J. Saper, Eds., 1988: Development and application of aerosol remote sensing with AVHRR data from the NOAA satellites. Aerosols in Climate, Deepak Publishing, 69–80.

    Google Scholar 

  • Rao, C.R.N., S.J. Holmes, R.K. Anderson, J.S. Winston, and P.E. Lehr, 1990: Weather Satellites: Systems, Data, and Environmental Applications. Amer. Meteor. Soc., 503 pp.

    Google Scholar 

  • Rossow, W.B., and A.A. Lacis, 1990: Global and seasonal cloud variations from satellite radiance measurements. Part II: Cloud properties and radiative effects. J. Climate, 3, 1204–1253.

    Article  Google Scholar 

  • Sadler, J.C., 1968: Average Cloudiness in the Tropics from Satellite Observations. East–West Center Press, 22 pp.

    Google Scholar 

  • Schereschewsky, P., 1945: Clouds and states of the sky. Handbook of Meteorology, F.A. Berry, E. Bollay, and N.R. Beers, Eds., McGraw Hill, 1068 pp.

    Google Scholar 

  • Schnapf, A., Ed., 1985: Monitoring Earth’s Ocean, Land, and Atmosphere from Space—Sensor, Systems, and Applications. American Institute of Aeronautics and Astronautics, 830 pp.

    Google Scholar 

  • Scofield, R., and V.J. Oliver, 1977: A scheme for estimating convective rainfall from satellite imagery. NOAA Tech. Memo NESS 86, Dept. of Commerce, Washington, DC, 47 pp.

    Google Scholar 

  • Scorer, R.S., 1990: Satellite as Microscope. Ellis Horwood, 268 pp.

    Google Scholar 

  • Segal, M., J.F.W. Purdom, J.L. Song, R.A. Pielke, and Y. Mahrer, 1986: Evaluation of cloud shading effects on the generation and modification of mesoscale circulations. Mon. Wea. Rev., 114, 1201–1212.

    Article  Google Scholar 

  • Sheets, R.C., 1990: The National Hurricane Center—Past, present, and future. Wea. Forecasting, 5, 185–232.

    Article  Google Scholar 

  • Shenk, W.E., 1985: Cloud motion derived winds: their accuracy, coverage, and suggestions for future improvements. NASA Symp. on Global Wind Measurements, Columbia, MD, NASA, 123–128.

    Google Scholar 

  • Shenk, W.E., and E.R. Kreins, 1975: The NASA severe storm research program. Preprints, Ninth Conf. on Severe Local Storms, Norman, OK, Amer. Meteor. Soc., 468–473.

    Google Scholar 

  • Shenk, W.E., and F. Mosher, 1987: Suggested severe local storm operational scenarios for GOES-I/M. NASA TM 100688, Washington, DC.

    Google Scholar 

  • Shenk, W.E., T.H. Vonder Haar, and W.L. Smith, 1987: An evaluation of observations from satellites for the study and prediction of meso-scale events and cyclone events. Bull. Amer. Meteor. Soc., 68, 21–35.

    Article  Google Scholar 

  • Smith, E.A., 1991: Review of Weather Satellites. Bull. Amer. Meteor. Soc., 72, 1402–1405.

    Article  Google Scholar 

  • Smith, W.L., 1985: Satellites. Handbook of Applied Meteorology, D.D. Houghton, Ed., John Wiley and Sons, 380–472.

    Google Scholar 

  • Smith, W.L., 1991: Atmospheric soundings from satellites—False expectation or the key to improved weather prediction? Royal Meteorological Society, Symons Memorial Lecture, London, UK, May 16, 1990. Quart. J. Roy. Meteor. Soc., 117, 267–297.

    Google Scholar 

  • Smith, W.L., H.M. Woolf, and W.J. Jacob, 1970: A regression method for obtaining real-time temperature and geopotential height profiles from satellite spectrometer measurements and its application to NIMBUS-3 “SIRS” observations. Mon. Wea. Rev., 98, 582–603.

    Article  Google Scholar 

  • Smith, W.L., D.T. Hilleary, J.C. Fischer, H.B. Howell, and H.M. Woolf, 1974a: Nimbus ITPR experiment. Appl. Opt., 13, 499–506.

    Article  Google Scholar 

  • Smith, W.L., D.H. Staelin, and J.T. Houghton, 1974b: Vertical temperature profiles from satellites—Results from second generation instruments aboard Nimbus-5. Proc. COSPAR Symp. on Approaches to Earth Survey Problems Through the Use of Space Techniques, Hamburg, Germany, Akademie-Verlag, 123–143.

    Google Scholar 

  • Smith, W.L., H.M. Woolf, C.M. Hayden, D.Q. Wark, and L.M. McMillin, 1979: The TIROS-N operational vertical sounder. Bull. Amer. Meteor. Soc., 60, 1177–1187.

    Google Scholar 

  • Smith, W.L., F.W. Nagle, C.M. Hayden, and H.M. Woolf, 1981a: Vertical mass and moisture structure from TIROS-N. Bull. Amer. Meteor. Soc., 62, 388–393.

    Google Scholar 

  • Smith, W.L., V.E. Suomi, W.P. Menzel, H.M. Woolf, L.A. Sromovsky, H.E. Revercomb, C.M. Hayden, D.N. Erickson, and F.R. Mosher, 1981b: First sounding results from VAS-D. Bull. Amer. Meteor. Soc., 62, 232–236.

    Google Scholar 

  • Smith, W.L., V.E. Suomi, F.-X. Zhou, and W.P. Menzel, 1982: Nowcasting applications of geostationary satellite atmospheric sounding data. Now-casting, K.A. Browning, Ed., Academic Press, 123–135.

    Google Scholar 

  • Smith, W.L., G.S. Wade, and H.M. Woolf, 1985: Combined atmospheric sounder/cloud imagery—A new forecasting tool. Bull. Amer. Meteor. Soc., 66, 138–141.

    Article  Google Scholar 

  • Smith, W.L., W.P. Bishop, V.F. Dvorak, C.M. Hayden, J.H. McElroy, F.R. Mosher, V.J. Oliver, J.F. Purdom, and D.Q. Wark, 1986: The meteorological satellite: Overview of 25 years of operation. Science, 231, 455–462.

    Article  Google Scholar 

  • SS/LORAL, 1995: Performance in space. SS/LORAL, CD-ROM. [Available from Space Systems LORAL, 3825 Fabian Way, Palo Alto, CA 94303.]

    Google Scholar 

  • Staelin, D.H., A.H. Barrett, J.W. Waters, F.T. Barath, E.J. Johnston, P.W. Rosenkranz, N.E. Gaut, and W.B. Lenoir, 1973: Microwave spectrometer on the Nimbus-5 satellite: Meteorological and geophysical data. Science, 182, 1339–1341.

    Article  Google Scholar 

  • Stephens, G., 1994: Remote Sensing of the Lower Atmosphere: An Introduction. Oxford University Press, 523 pp.

    Google Scholar 

  • Stowe, L.L., R.M. Carey, and P.P. Pellegrino, 1992: Monitoring the Mt. Pinatubo aerosol layer with NOAA/11 AVHRR data. Geophys. Res. Lett., 19, 159–162.

    Article  Google Scholar 

  • Suomi, V.E., and R. Parent, 1968: A color view of planet earth. Bull. Amer. Meteor. Soc., 49, 74–75.

    Google Scholar 

  • Tarpley, J.D., S.R. Schneider, and R.L. Money, 1984: Global vegetation indices from the NOAA-7 meteorological satellite. J. Climate Appl. Meteor., 23, 491–494.

    Article  Google Scholar 

  • Tepper, M., 1982: Early program development and implementation. NASA Conf. Publ. 2257, 5–33.

    Google Scholar 

  • Twitchell, P.F., E.A. Rasmussen, and K.L. Davidson, Eds., 1989: Polar and Arctic Lows. A. Deepak Publishing, 420 pp.

    Google Scholar 

  • van de Boogaard, H.M.E., Ed., 1966: Satellite data in meteorological research. NCAR-TN-11, Boulder, CO, 349 pp.

    Google Scholar 

  • Vaughn, W.W., 1982: Meteorological satellites—some early history. Meteorological Satellites Past, Present and Future. NASA Conf. Publ. 2227, 1–2.

    Google Scholar 

  • Velden, C.S., 1987: Satellite observations of Hurricane Elena (1985) using the VAS 6.7 µm “water-vapor” channel. Bull. Amer. Meteor. Soc., 68, 210–215.

    Article  Google Scholar 

  • Velden, C.S., and W.L. Smith, 1983: Monitoring tropical cyclone evolution with NOAA satellite microwave observations. J. Climate Appl. Meteor., 22, 714–724.

    Article  Google Scholar 

  • Velden, C.S., and M. Mayfield, 1984: Applications of VAS and TOVS to tropical cyclones. Bull. Amer. Meteor. Soc., 65, 1059–1067.

    Article  Google Scholar 

  • Velden, C.S., C.M. Hayden, W.P. Menzel, J.L. Franklin, and J.S. Lynch, 1992: The impact of satellite-derived winds on numerical hurricane track forecasting. Wea. Forecasting, 7, 107–118.

    Article  Google Scholar 

  • Vonder Haar, T.H., G.G. Campbell, E.A. Smith, A. Arking, K. Coulson, J. Hickey, F. House, A. Ingersoll, H. Jacobowitz, L. Smith, and L. Stowe, 1981: Measurements of the earth radiation budget from satellites during the first GARP global experiment. Adv. Space Res., 1, 285–297.

    Article  Google Scholar 

  • Wark, D.Q., and H.E. Fleming, 1966: Indirect measurements of atmospheric temperature profiles from satellites. Mon. Wea. Rev., 94, 351–362.

    Article  Google Scholar 

  • Wark, D.Q., D.T. Hilleary, S.P. Anderson, and J.C. Fischer, 1970: Nimbus satellite infrared spectrometer experiments. IEEE Trans. Geosci. Electron., GE-8, 264–270.

    Article  Google Scholar 

  • Weinstein, M., and V.E. Suomi, 1961: Analysis of satellite infrared radiation measurements on a synoptic scale. Mon. Wea. Rev., 89, 419–428.

    Article  Google Scholar 

  • Weiss, C.E., and J.F.W. Purdom, 1974: The effect of early morning cloud cover on afternoon thunderstorm activity. Mon. Wea. Rev., 102, 400–401.

    Article  Google Scholar 

  • Weldon, R.B., and S.J. Holmes, 1991: Water vapor imagery. NOAA Tech. Rep. NESDIS 57, U.S. Dept. of Commerce, NOAA, NESDIS, Washington, DC, 213 pp.

    Google Scholar 

  • Wexler, H. 1954: Observing the weather from a satellite vehicle. Brit. Interplan. Soc., 13, 269–276.

    Google Scholar 

  • Wylie, D.P., W.P. Menzel, H.M. Woolf, and K.I. Strabala, 1994: Four years of global cirrus cloud statistics using HIRS. J. Climate, 7, 1972–1986.

    Article  Google Scholar 

Download references

Authors

Editor information

James Rodger Fleming

Rights and permissions

Reprints and permissions

Copyright information

© 1996 American Meteorological Society

About this chapter

Cite this chapter

Purdom, J.F.W., Menzel, W.P. (1996). Evolution of Satellite Observations in the United States and Their Use in Meteorology. In: Fleming, J.R. (eds) Historical Essays on Meteorology 1919–1995. American Meteorological Society, Boston, MA. https://doi.org/10.1007/978-1-940033-84-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-940033-84-6_5

  • Publisher Name: American Meteorological Society, Boston, MA

  • Online ISBN: 978-1-940033-84-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics