Skip to main content

Early Applications of the Principles of Adiabatic Change and Vertical Convection

  • Chapter
The Thermal Theory of Cyclones

Part of the book series: Meteorological Monographs ((METEOR))

  • 96 Accesses

Abstract

A key factor in the formulation of the thermal theory of cyclones was the application to atmospheric conditions of the principle of adiabatic change, and, closely related, the reinterpretation of the principle of vertical convection. Since the principle of adiabatic change, which constitutes the process of compression or expansion of a gas with no transfer of heat between gas and environment, was of such importance for Nineteenth Century cyclone theory, its development within the broader context of physics will be briefly reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 36.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Comprehensive historical discussions of adiabatic change may be found in T. S. Kuhn, “The caloric theory of adiabatic compression,” Isis, 49 (1958), 132–140;

    Article  Google Scholar 

  2. R. Fox, The Caloric Theory of Gases from Lavoisier to Regnault (Oxford, Claredon Press, 1971).

    Google Scholar 

  3. Dalton, “Experiments and observations on the heat and cold produced by the mechanical condensation and rarefaction of air,” Memoirs of the Manchester Literary and Philosophical Society, 5. part 2 (1802), 515–526; Dalton, “On the expansion of elastic fluid by heat,” ibid., pp. 595–602.

    Google Scholar 

  4. Gay-Lussac, “Recherches sur la dilation des gaz et des vapeurs,” Ann. Chim. Phys., 43 (1802), 137–175.

    Google Scholar 

  5. Gay-Lussac, “Premier essai pour déterminer les variations de température qu’éprouvent les gaz en changeant de densité, et considération sur leur capacité pour le calorique,” Mémoires de Physique et de Chemie de la Société d’ Arcueil, 1 (1807), 180–203.

    Google Scholar 

  6. Laplace, “Sur la vitesse du son dans l’air et dans l’eau,” Ann. Chim. Phys., 3 (1816), 238–241. Laplace distinguished between specific heats of gases at constant pressure and volume, c and c, thereby confirming and quantifying a belief held by scientists in the three preceding decades. See also:

    Google Scholar 

  7. B. S. Finn, “Laplace and the speed of sound,” Isis, 55, (1964), 7–19.

    Article  Google Scholar 

  8. N. Clément and C. B. Desormes, “Détermination expérimentale du zéro absolu de la chaleur et du calorique spécifique des gaz,” Journ. Phys., 89 (1819), 321–346, 428–455;

    Google Scholar 

  9. Gay-Lussac and J. J. Welter, who measured the ratio c p/c v for Laplace, never published the details of their experiments; a short note of their computations is found in “Note sur la vitesse du son,” Ann. Chim. Phys., 20 (1822), 266–269.

    Google Scholar 

  10. Poisson, “Sur la vitesse du son,”Ann. Chim. Phys., 23 (1823), 5–15, and “Sur la chaleur du gaz et des vapeurs,” ibid., 337–352. Poisson derived the equation for the adiabatic compression of gases, pV7 = constant, by using the equation of state (combined laws of Mariotte and Gay-Lussac) and the definitions of the specific heats c, and c6; these were related by the ratio cp/c, = y, as Laplace had shown. The model of heat underlying these equations did not enter in the calculation. (According to the caloric theory of adiabatic compression the “total heat” remained constant, while the temperature increase indicated that some “latent caloric” had become perceptible.)

    Google Scholar 

  11. Sir N. Shaw, Manual of Meteorology, Vol. 1 (London, Cambridge University Press, 1926), p. 301.

    Google Scholar 

  12. James Pollard Espy, The Philosophy of Storms (Boston, Little and Brown, 1841), Preface, p. iii.

    Google Scholar 

  13. John Dalton, Meteorological Observations and Essays (London, T. Ostell, 1793), 115–139.

    Google Scholar 

  14. Espy (1841), Preface, p. iii. For a detailed review of Espy’s work, see J. E. McDonald, “James Espy and the beginnings of cloud thermodynamics,” Bull. Am. Met. Soc., 44 (1963), 634–641.

    Google Scholar 

  15. James Hutton (1726–1797), “The theory of rain,” Trans. Roy. Soc., Edinb., 1 (1788), 41–86. For further comments see Shaw, Manual, op. cit., 125–126.

    Article  Google Scholar 

  16. For an analysis of the development of science in America during the first half of the Nineteenth Century see George A. Daniels, American Science in the Age of Jackson (New York, Columbia University Press, 1968), in particular pp. 14–15.

    Google Scholar 

  17. Loomis, “On two storms which were experienced throughout the United States in the month of February, 1842,” Trans. Am. Phil. Soc., 9 (1846), 161–184. Read May 1843.

    Article  Google Scholar 

  18. Hadley, “Concerning the cause of the general trade winds,” Trans. Roy. Soc., 39 (1735), 58–62.

    Article  Google Scholar 

  19. H. A. Newton, “Biographical Memoir of Elias Loomis,” Biogr. Mem., Nat. Ac. Sci., 3 (1895), p. 236.

    Google Scholar 

  20. E. N. Lorenz, The Nature and Theory of the General Circulation of the Atmosphere (Geneva, World Meteorological Organization, 1967), 57–78.

    Google Scholar 

  21. Matthew Fontaine Maury, The Physical Geography of the Sea (London, Sampson Low, 1855). The book enjoyed great popularity, going through eight editions during its first five years.

    Book  Google Scholar 

  22. Interest in the introduction of the Coriolis force into meteorology has resulted in a number of historical studies. See, for example, J. Hann, “Ueber die Priorität des Buys Ballot’schen Gesetzes,” Wien, Met. Zelts., 20 (1885), 94–97;

    Google Scholar 

  23. Hann’s Lehrbuch der Meteorologie, 3rd ed., (Leipzig, Tauchnitz, 1915), 426–434;

    Google Scholar 

  24. W. v. Bebber, Handbuch der ausübenden Witterungskunde (Stuttgart, Enke, 1885), 287–290;

    Google Scholar 

  25. Ferrel, “Priorität des Buys Batlot’schen Gesetzes,” Wien, Met. Zeits., 20 (1885), p. 187;

    Google Scholar 

  26. W. Köppen, “Die Stellung von H. W. Brandes und H. W. Dove, 1820 und 1868, zum barischen Windgesetz,” Met. Zeits., 2 (1885), 414–416;

    Google Scholar 

  27. R. H. Scott, “Note on early notices of the relation between atmospheric pressure and wind,” Quart. Journ. Roy. Met. Soc., 11 (1885), 251–252;

    Google Scholar 

  28. N. Ekholm, “Ueber die Einwirkung der ablenkenden Kraft der Erdrotation auf die Luftbewegung,” Bihang, Kongl. Svenska Vet.-Akad. Handl., 15 (1890), Afd. 1, No. 14; Schneider-Carius, op. cit., 220–236; Khrghian, op. cit., 166–167, 219–222;

    Google Scholar 

  29. E. W. Woolard, “Historical note on the deflecting influence of the rotation of the earth,” Journ. Franklin Inst., 233 (1942), 465–470;

    Article  Google Scholar 

  30. H. L. Burstyn, “Early explanations of the role of the earth’s rotation in the circulation of the atmosphere and the ocean,” Isis, 52 (1966), 167–187, Burstyn, “The deflecting force and Coriolis,” op. cit.;

    Article  Google Scholar 

  31. C. L. Jordan, “On Coriolis and the deflecting force,” Bull. Am. Met. Soc., 47 (1966), 401–403;

    Google Scholar 

  32. H. E. Landsberg, “Why indeed Coriolis,” Bull. Am. Met. Soc., 47 (1966), 887–889. For references of original works on the Coriolis force see Woolard and Landsberg, op. cit; in particular: Laplace, Méchanique Céleste, Book 10, (1803) Chapter 5; Coriolis in a series of papers from 1832 to 1836, among them, “Mémoire sur les équations du mouvement relatif des systèmes de corps,” Journ. de L’École Polytechnique, 15 cahier 24 (1835), 142–154 and Comp. Ren., 2 (1836), 172–174;

    Google Scholar 

  33. S. D. Poisson, “Extrait de la première partie d’un mémoire sur le mouvement des projectiles dans l’air, en ayant égard a leur rotation et a l’influence de mouvement diurne de la terre,” Comp. Ren., 5 (1837), 660–667.

    Google Scholar 

  34. Tracy specifically noted the deficiency of Hadley’s explanation. See Tracy, “On the rotary action of storms,” Am. Journ. Sci., 45 (1843), 65–72.

    Google Scholar 

  35. W. M. Davis, “Ferrel’s contributions to meteorology,” Am. Met. J., 8 (1891), 348–359. Davis remarks on page 357: “I shall not here consider the special features of this theory”. The reader may find it fully stated in Ferrel’s Popular Treatise on the Winds; but a paragraph may be given to one feature of the theory that must certainly be regarded in its favor; namely, the correlation that it establishes between convectional cyclones and the general planetary circulations; for when theoretical views bring out simple relations between apparently remotely related phenomena, this may certainly be claimed to their credit. Ferrel draws a clear comparison and a sharp contrast between the general circulation and the cyclonic circulation. Both are cyclonic, inasmuch as they whirl; but one has a cold center: the other a warm center…

    Google Scholar 

  36. Sir N. Shaw, “Illusions of the upper air,” Royal Institution Evening Lecture, March 10, 1916, p. 16.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1979 American Meteorological Society

About this chapter

Cite this chapter

Kutzbach, G. (1979). Early Applications of the Principles of Adiabatic Change and Vertical Convection. In: The Thermal Theory of Cyclones. Meteorological Monographs. American Meteorological Society, Boston, MA. https://doi.org/10.1007/978-1-940033-80-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-940033-80-8_2

  • Publisher Name: American Meteorological Society, Boston, MA

  • Online ISBN: 978-1-940033-80-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics