Skip to main content

Supply of Water to Plants

  • Chapter
Agricultural Meteorology

Part of the book series: Meteorological Monographs ((METEOR,volume 6))

Abstract

From the epidermal cells of their roots, where water enters, to the intercellular spores and epidermal cells of their leaves, where water is lost, water flows through plants and is distributed among the various tissues according to the physical and physicochemical laws of diffusion, cohesion, colloids, solutes, and evaporation. Nevertheless, the reason for studying the supply of water to plants is the fact that their life depends upon it as well as the fact that nearly three-quarters of the water received by a land such as the United States is lost by evapotransipration from farm and forest and grassland (Ackerman and Löf, 1959).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 36.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Reviews, textbooks, encyclopedias

  • Benett-Clark, T. A., 1959: Water relation of cells. Plant Physiology, New York and London, Academic Press, 105–192.

    Google Scholar 

  • Crafts, A. S., H. B. Currier and C. R. Stocking, 1949: Water in the physiology of plants. Chronica Botanica, Waltham, Mass., 240 pp.

    Google Scholar 

  • Eckhardt, F. E., 1960: Eco-physiological measuring techniques applied to research on water relations of plants in arid and semi-arid conditions. Arid Zone Research (UNESCO), 15, 139–171.

    Google Scholar 

  • Greenidge, K. N. H., 1957: Ascent of sap. Ann. Rev. Plant Physiol., 8, 237–256.

    Article  Google Scholar 

  • Heath, O. V. S., 1959: The water relations to stomatal cells and the mechanism of stomatal movement. Plant Physiology, New York and London, Academic Press, 193–252.

    Google Scholar 

  • Hülsbruch, M., 1956: Die Wasserleitung in Parenchym. Encyclopedia of Plant Physiology, Berlin, Springer-Verlag, 522–540.

    Google Scholar 

  • Kramer, P. J., 1949: Plant- and Soil Water Relationship. New York, McGraw-Hill, 347 pp.

    Google Scholar 

  • Kramer, P. J., 1955: Water relations of plant cell and tissues. Ann. Rev. Plant Physiol., 6, 253–272.

    Article  Google Scholar 

  • Kramer, P. J., 1959: Transpiration and the water economy of plants 1959. Plant Physiology, New York and London, Academic Press, 607–726.

    Google Scholar 

  • Maximov, N. A., 1929: The Plant in its Relation to Water. London, Allen and Unwin, 451 pp.

    Google Scholar 

  • Ruhland, W. von, E. Ashby et al., 1956: Water relations of plants. Handbuch der Pflanzenphysiologie (Encyclopedia of Plant Physiology), Vol. III, Berlin, Springer-Verlag, 1073 pp.

    Google Scholar 

  • Slatyer, R. O., 1960: Absorption of water by plants. Bot. Rev., 26, 331–392.

    Article  Google Scholar 

  • Slatyer, R. O., 1962: Internal water relations of higher plants. Ann. Rev. Plant Physiol., 13, 350–375.

    Article  Google Scholar 

  • Slatyer, R. O., and I. C. Mcllroy, 1961: Practical microclimatology with special reference to the water factor in soil-plant-atmosphere relationships. C.S. I. R.O., Australia, and UNESCO.

    Google Scholar 

  • Stocker, O., 1961: Morphological and physiological changes in plants due to water deficiency. Arid Zone Research (UNESCO), 16, 3–104.

    Google Scholar 

  • Stone, E. C., 1957a: Dew as an ecological factor. I. A review of the literature. Ecology, 38, 407–413.

    Article  Google Scholar 

  • Walter, H., 1951: Grundlagen der Pflanzenverbreitung. I. Standortslehre. 1–525, Stuttgart, Ulmer.

    Google Scholar 

  • Walter, H., 1955: The water economy and the hydrature of plants. Ann. Rev. Plant Physiol., 6, 239–252.

    Article  Google Scholar 

Other references

  • Ackerman, E. A., and Löf, G. O. G., 1959: Technology in American Water Development. Johns Hopkins Press, Baltimore.

    Google Scholar 

  • van Andel, O. M., 1952: Determinations of the osmotic value of exudation sap by means of the thermo-electric method of Baldes and Johnson. Proc. Acad. Sci. Amsterdam, 55, 40–48.

    Google Scholar 

  • Arcichovskij, V., and A. Osipov, 1931: Saugkraftmessungen nach der Schlierenmethode. Planta, 14, 545–551.

    Article  Google Scholar 

  • Ashby, E., and R. Wolf, 1947: A critical examination of the gravimetric method of determining suction force. Ann. Bot. N.S., 11, 261–268.

    Google Scholar 

  • Bange, G. G. J., 1953: On the quantitative explanation of stomatal transpiration. Acta Bot. Neerl., 255–296.

    Google Scholar 

  • Bormann, F. M., 1957: Moisture transfer between plants through intertwined root systems. Plant Physiol., 32, 48–55.

    Article  Google Scholar 

  • Čatskÿ, J., 1960: Determination of water deficit in disks cut out from leaf blades. Biol. Plant., 2, 76–78.

    Article  Google Scholar 

  • Čatskÿ, J., 1962: Water saturation deficit and its development in young and old leaves. The Water Relations of Plant, Oxford, Blackwell Sci. Publ., 101–112.

    Google Scholar 

  • Čatskÿ, J., 1962: Water saturation deficit in the wilting plant. The preference of young leaves and the translocation of water from old into young leaves. Biol. Plant., 4, 306–314.

    Article  Google Scholar 

  • Edlefsen, N. E., 1941: Some thermodynamics of aspects of the use of soil moisture by plants. Trans. Amer. Geophys. Union, 22, 917–940.

    Google Scholar 

  • Frey-Wyssling, A., und E. Haussermann, 1941: Über die Auskleidung der Mesophyllinterzellularen. Ber. schw. bot. Ges., 51, 430.

    Google Scholar 

  • Gale, J., 1961: Studies on plant antitranspirants. Physiol. Plant, 14, 777–786.

    Article  Google Scholar 

  • Genkel, P. A., 1946: Drought resistance and hardening. (In Russian.) Akad. Nauk. SSSR, 5, 1–236.

    Google Scholar 

  • Gusev, N. A., 1960: Some methods of studying water relations of plants. (In Russian.) Vses. Bot. Obsc. Akad. Nauk. SSSR, Leningrad, 1–60.

    Google Scholar 

  • Härtel, O., 1947: Über die pflanzliche Kutikulartranspiration und ihre Beziehung zur Membranquellbackeit. Sitzungsber. math.-naturw. Akad. Wiss. Kl. Abt. I, 156, 57–86.

    Google Scholar 

  • van den Honert, T. H., 1948: Water transport in plants as a catenary process. Discussions of the Faraday Soc., 3, 146–153.

    Article  Google Scholar 

  • Huber, B., 1928: Weitere quantitative Untersuchungen über das Wasserleitungssystem der Pflanzen. Jb. wiss. Bot., 67, 877–959.

    Google Scholar 

  • Huber, B., 1930: Untersuchungen über die Gesetze der Porenverdunstung. Z. Bot., 23, 839–891.

    Google Scholar 

  • Huber, B., 1932: Beobachtungen und Messungen pflanzlicher Saftströme. Ber. dtsch. bot. Ges., 50, 89–109.

    Google Scholar 

  • Huber, B., and E. Schmidt, 1937: Eine Kompensationsmethode zur thermoelektrischen Messung langsamer Saftströme. Ber. dtsch. bot. Ges., 55, 515–529.

    Google Scholar 

  • Hygen, G., 1951 and 1953: Studies in plant transpiration. I. and II. Physiol. Plant, 4, 57–187 and 6, 106–133.

    Article  Google Scholar 

  • Hylmö, B., 1953: Transpiration and ion absorption. Physiol. Plant., 6, 333–405.

    Article  Google Scholar 

  • Jastrebov, M. T., 1954: Modification of the method for determining osmotic pressure of solutions. (In Russian.) Tr. in-ta. fiz. rast. Akad. Nauk. SSSR, 8, 404–411.

    Google Scholar 

  • Kausch, W., 1955: Saugkraft und Wassernachleitung im Boden als physiologische Faktoren. Planta, 45, 217–263.

    Article  Google Scholar 

  • Kreeb, K., 1960: Über die gravimetrische Methode zur Bestimmung der Saugspannung und das Problem des negativen Turgors. Planta, 55, 274–282.

    Article  Google Scholar 

  • Kreeb, K., and M. Önal, 1961: Über die gravimetrische Methode zur Bestimmung der Saugspannung und das Problem des negativen Turgors. II. Die Berücksichtigung von Atmungsverlusten während der Messungen. Planta, 56, 409–415.

    Article  Google Scholar 

  • Livingston, B., and W. H. Brown, 1912: Relation of the daily march of transpiration to variations in the water content of foliage leaves. Bot. Gaz., 53, 309.

    Article  Google Scholar 

  • Lemée, G., and G. Laisné, 1951: La méthode réfractométrique de mesure de la succion. Riv. gin. bot., 58, 336–347.

    Google Scholar 

  • McMillan, W. D., and R. H. Borgy, 1960: Interception loss from grass. J. Geophys. Res., 65, 2389–2394.

    Article  Google Scholar 

  • Marr, A. G., and Y. Vaadia, 1961: Rapid cryoscopic technique for measuring osmotic properties of drop size samples. Plant Physiol., 36, 677–680.

    Article  Google Scholar 

  • Maximov, N. A., and N. S. Petinov, 1948: The determination of suction force in leaves by a compensation method by means of the refractometer. (In Russian.) Dokl. Akad. Nauk. SSSR, 62, 537–540.

    Google Scholar 

  • Meyers, B. S., 1945: A critical evaluation of the terminology of diffusion phenomena. Plant Physiol., 20, 142–164.

    Article  Google Scholar 

  • Monteith, J. L., 1957: Dew. Quart. J. R. Meteor. Soc., 83, 322–341.

    Article  Google Scholar 

  • Monteith, J. L., and P. C. Owen, 1960: A thermocouple method for measuring relative humidity in the range 95–100%. J. Sci. Instr., 35, 443–446.

    Article  Google Scholar 

  • Münch, E., 1930: Die Stoffbewegungen in der Pflanze. Jena, Fischer.

    Google Scholar 

  • Oparin, A. J., 1937: Richtungseinstellung der Invertasewirkung in der lebenden Pflanzenzelle. Enzymologia, (Den Haag), 4, 13.

    Google Scholar 

  • Pisek, A., and E. E. Berger, 1938: Kutikuläre Transpiration und Trockenresistenz isolierter Blätter und Sprossen. Planta, 28, 124–155.

    Article  Google Scholar 

  • Pisek, A., and E. Winkler, 1953: Die Schliessbewegung der Stomata bei ökologisch verschiedenen Pflanzentypen in Abhängigkeit von Wassersättigungszustand der Blätter und vom Licht. Planta, 42, 253–278.

    Article  Google Scholar 

  • Renner, O., 1915: Theoretisches und Experimentelles zur Kohäsionstheorie der Wasserbewegung in der Pflanze. Jb. wiss. Bot., 56, 617–667.

    Google Scholar 

  • Richards, L. A., and G. Ogata, 1958: Thermocouple for vapor pressure measurement in biological and soil system at high humidity. Science, 128, 1089–1090.

    Article  Google Scholar 

  • Shardakov, V. S., 1948: New field method for determining of suction tension in plants. (In Russian.) Dokl. Akad. Nauk. SSSR, 60, 169–172.

    Google Scholar 

  • Skazkine, F. D., 1954: La résistance des céréales au manque d’eau dans le sol durant différents périodes de leur développement. Essais bot. (Acad. Sci. URSS) 2, 751–962.

    Google Scholar 

  • Slayter, R. O., 1951: The influence of progressing increases in total soil moisture stress on transpiration, growth and internal water relationships of plants. Austral. J. Biol. Sci., 10, 320–336.

    Article  Google Scholar 

  • Slayter, R. O., 1956: Absorption of water from atmospheres of different humidity and its transport through plants. Austral. J. Biol. Sci., 9, 552–558.

    Article  Google Scholar 

  • Slayter, R. O., 1958: The measurement of diffusion pressure deficit in plants by a method of vapour equilibrium. Austral. J. Biol. Sci., 11, 349–365.

    Article  Google Scholar 

  • Slavík, B., 1958: The influence of water deficit on transpiration. Physiol. Plantarum, 11, 524–536.

    Article  Google Scholar 

  • Slavík, B., 1959: The relation of the refractive index of plant cell sap to its osmotic pressure. Biol. Plant, 1, 48–53.

    Article  Google Scholar 

  • Slavík, B., 1963a: On the problem of the relationship between hydration of leaf tissue and intensity of photosynthesis and respiration. The Water Relations of Plants, Oxford, Blackwell Sci. Publ., 225–234.

    Google Scholar 

  • Slavík, B., 1963b: Relationship between osmotic potential of the cell sap and the water saturation deficit during the wilting of leaf tissues. Biol. Plant, 5, 258–264.

    Article  Google Scholar 

  • Slavíková, J., 1963: Eine ökologische Methode zur Wurzelsaugkraftmessung. Preslia, 35, 241–242.

    Google Scholar 

  • Spanner, D. C., 1951: The Peltier effect and its use in the measurement of suction pressure. J. Exp. Bot., 2, 145–148.

    Article  Google Scholar 

  • Stålfelt, M. G., 1955: The stomata as a hydrophotic regulator of the water deficit of the plant. Physiol. Plant., 8, 572–593.

    Article  Google Scholar 

  • Stocker, O., 1929: Das Wasserdefizit von Gefässpflanzen in verschiedenen Klimazonen. Planta, 7, 382–387.

    Article  Google Scholar 

  • Stone, E. C., 1957: Dew as an ecological factor. II. The effect of artificial dew on the survival of Pinus ponderosa and associated species. Ecology, 38, 414–422.

    Article  Google Scholar 

  • Strugger, S., 1938: Die luminiszensmikroskopische Analyse des Transpirationsstromes in Parenchymen. Flora, 33, 56–68.

    Google Scholar 

  • Tranquillini, W., 1954: Über den Einfluss von Übertemperaturen der Blätter bei Dauereinschluss in Küvetten auf die ökologische CO2-Assimilation. Ber. dtsch. bot. Ges., 67, 191–204.

    Google Scholar 

  • Ursprung, A., 1915: Über die Kohäsion des Wassers im Farn-annulus. Ber. dtsch. bot. Ges., 33, 153–162.

    Google Scholar 

  • Ursprung, A., 1939: Die Messung der osmotischen Zustandgrossen pflanzlicher Zelle und Gewebe. Handb. d. biol. Arbeitsmethoden (E. Abderhalden ed.)/XI/4. 2 Berlin, Wien, 1109–1572.

    Google Scholar 

  • Ursprung, A., and G. Blum, 1916: Zur Methode der Saugkraftmessung. Ber. dtsch. bot. Ges., 34, 525–539.

    Google Scholar 

  • Ursprung, A., and G. Blum, 1930: Zwei neue Saugkraftmessmethoden. Jb. f. wiss. Bot., 72, 254–234.

    Google Scholar 

  • Virgin, H. I., 1955: A new method for the determination of the turgor of plant tissues. Physiol. Plant., 8, 954–962.

    Article  Google Scholar 

  • Walter, H., 1931: Die Hydratur der Pflanze. Jena, Fischer.

    Google Scholar 

  • Walter, H., 1963: Zur Klärung des spezifischen Wasserzustandes im Plasma und in der Zellwand bei der höheren Pflanze und seine Bestimmung. Ber. dtsch. bot. Ges., 76, 40–71.

    Google Scholar 

  • Weatherley, P. E., 1950: Studies in the water relations of the cotton plant. I. The field measurement of water deficits in leaves. New Phytol., 49, 81–97.

    Article  Google Scholar 

  • Weatherley, P. E., 1960: A new micro-osmometer. J. Exper. Bot., 11, 258–268.

    Article  Google Scholar 

  • Wenzl, H., 1939: Die Bestimmung des Spaltöffnungszustandes nach dem Abdruckverfahren. Jb. wiss. Bot., 88, 89–122.

    Google Scholar 

  • Zelitch, I., and P. E. Waggoner, 1962: Effect of chemical control of stomata on transpiration and photosynthesis. Proc. Natl. Acad. Sci., 48, 1101–1108.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1965 American Meteorological Society

About this chapter

Cite this chapter

Slavík, B. (1965). Supply of Water to Plants. In: Agricultural Meteorology. Meteorological Monographs, vol 6. American Meteorological Society, Boston, MA. https://doi.org/10.1007/978-1-940033-58-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-940033-58-7_10

  • Publisher Name: American Meteorological Society, Boston, MA

  • Online ISBN: 978-1-940033-58-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics