Skip to main content

Part of the book series: Meteorological Monographs ((METEOR,volume 4))

Abstract

Lake Erie is an enclosed, shallow sea with approximate mean dimensions of 60 feet in depth, 240 miles in length, and 40 miles in width. It is located in the region of confluence of the principal winter-time tracks associated with Alberta and Colorado lows, and therefore is exposed to wind action from severe cyclonic storms many of which reach their full intensity while well within range of influence upon the Lake. The associated wind tides are well known and in extreme cases have produced wind set-up in excess of 13 feet difference between Buffalo and Toledo at opposite ends of the longitudinal axis.

In this investigation numerical computations have been made for nine cases of record of extreme wind tide on Lake Erie. The computations are based upon an approximate, two-dimensional form of the Ekman boundary-layer equations, in which the viscous dimension is parameterized by an Ekman number. Effects of gravity, friction (with an eddy viscosity 40 cm2 sec−1) and the earth’s rotation are included.

The prediction equations are amenable to numerical integration by standard methods applicable to the momentum form of the dynamical equations; a pair of conjugate Richardson lattices is used for this purpose. Wind stress was obtained by an interpolation procedure based upon hourly surface-wind observations at six first-order stations located on the periphery of the Lake. A quadratic resistance formula with skin-friction coefficient 3.0 × 10−8 gave good results for computed wind set-up.

Although prediction of resurgences associated with the 14-hr free period was unsatisfactory, the average coefficient of correlation obtained between computed and observed set-up at various stations where hourly lake-level data are available is greater than 0.90. In general, the results of the investigation may be regarded as confirming that a sound basis exists for operational prediction of wind tides on Lake Erie by dynamical methods.

This investigation was supported through funds provided by the U. S. Weather Bureau (Grant WBG-7, Technical Report Number 7, December 1962).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 36.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Defant, Albert, 1961: Physical oceanography. London, Pergamon Press, Vol. 2, 598 pp.

    Google Scholar 

  • Ekman, V. Walfrid, 1905: On the influence of the earth’s rotation on ocean currents. Arkiv för Matematik, Astronomi och Fysik, 2, No. 11, 52 pp.

    Google Scholar 

  • Ekman, V. Walfrid, 1923: Über Horizontal-circulation bei winderzeugten Meereströmungen. Arkiv for Matematik, Astronomi och Fysik, 17, No. 26, 74 pp.

    Google Scholar 

  • Eliassen, A., 1956: A procedure for numerical integration of the primitive equations of the two-parameter model of the atmosphere. University of California at Los Angeles, Department of Meteorology.

    Google Scholar 

  • Endrös, A., 1934: Beobachtungen über die Dämpfung der Seiches in Seen. Gerlands Beitr. Geophys., 41, 130–148.

    Google Scholar 

  • Fischer, G., 1959: Ein numerisches Verfahren zur Errechnung von Windstau und Gezeiten in Randmeeren. Tellus, 11, 60–76.

    Article  Google Scholar 

  • Fjeldstad, Jonas Ekman, 1930: Ein Problem aus der Windstrom-theorie. Z. angew. Math. u. Mech., 10, 121–137.

    Article  Google Scholar 

  • Garriott, E. B., 1903: Storms of the Great Lakes. U. S. Weather Bureau, Bulletin K, 9 pp.

    Google Scholar 

  • Gillies, D. K. A., 1959: Winds and water levels on Lake Erie. Royal Meteorological Society, Canadian Branch, 9, No. 1, 12–24.

    Google Scholar 

  • Gohin, F., 1961: Détermination des dénivellations et des courants de marée. Proceedings, Seventh Congress on Coastal Engineering, The Hague, August 1960. Council on Wave Research, University of California, 2 volumes, 1001 pp., Vol. 2, 485–509.

    Google Scholar 

  • Hansen, Walter, 1956: Theorie zur Errechnung des Wasserstandes und der Srömungen in Randmeeren nebst Anwendungen. Tellus, 8, 287–300.

    Article  Google Scholar 

  • Harris, D. Lee, 1962: The equivalence between certain statistical prediction methods and linearized dynamical methods. Mon. Wea. Rev., 90, 331–340.

    Article  Google Scholar 

  • Hayford, John F., 1922: Effects of winds and of barometric pressures on the Great Lakes. Carnegie Institution of Washington, 133 pp.

    Google Scholar 

  • Hellström, B. M. O., 1941: Wind effects on lakes and rivers. Ingeniörsvetenskaps-akademien, Handlingar 158, 191 pp.

    Google Scholar 

  • Henry, Alfred J., 1902: Wind velocity and fluctuations of water level on Lake Erie. U. S. Weather Bureau, Bulletin J, 22 pp.

    Google Scholar 

  • Hidaka, Koji, 1933a: A mathematical investigation on the development of wind currents in heterogeneous waters. Memoirs, Imperial Marine Observatory (Kobe), 5, 105–139.

    Google Scholar 

  • Hidaka, Koji, 1933b: Non-stationary ocean currents. Memoirs, Imperial Marine Observatory (Kobe), 5, 141–266.

    Google Scholar 

  • Hidaka, Koji, 1936: Contributions to the theory of stationary drift currents in the ocean. Memoirs, Imperial Marine Observatory (Kobe), 6, 105–135.

    Google Scholar 

  • Horrocks, H., 1927a: Meteorological perturbations of tides and currents in an unlimited channel rotating with the earth. Proc. Roy. Soc. London (Series A), 115, 170–183.

    Article  Google Scholar 

  • Horrocks, H., 1927b: Generalized Sturm-Liouville expansions in series of pairs of related functions. Proc. Roy. Soc., London (Series A), 115, 184–198.

    Article  Google Scholar 

  • Hunt, Ira A., Jr., 1958: Winds, wind set-ups, and seiches on Lake Erie, part 1. U. S. Corps of Engineers, Lake Survey, 36 pp.

    Google Scholar 

  • Hunt, Ira A., 1959: Winds, wind set-ups, and seiches on Lake Erie, part 2. U. S. Corps of Engineers, Lake Survey, 58 pp.

    Google Scholar 

  • Hutchinson, G. Evelyn, 1957: A treatise on limnology. New York, John Wiley and Sons, Vol. 1, 1015 pp.

    Google Scholar 

  • Irish, Shirley M., and George W. Platzman, 1962: An investigation of the meteorological conditions associated with extreme wind tides on Lake Erie. Mon. Wea. Rev., 90, 39–47.

    Article  Google Scholar 

  • Isaacson, E., J. J. Stoker and A. Troesch, 1958: Numerical solution of flow problems in rivers. Proceedings, American Society of Civil Engineers, Journal of the Hydraulics Division, paper 1810, 18 pp.

    Google Scholar 

  • Keulegan, Garbis H., 1953: Hydrodynamic effects of gales on Lake Erie. J. Res. Natl. Bur. Standards, 50, 99–109.

    Article  Google Scholar 

  • Lauwerier, H. A., 1960: The North Sea problem. V. Free motions of a rotating rectangular bay. Proceedings, Koninklijke Nederlandske Akademie van Wetenschappen (Series A), 63, 423–438.

    Google Scholar 

  • Lettau, Heinz H., 1959: Wind profile, surface stress and geostrophic drag coefficients in the atmsopheric surface layer. Advances in geophysics, 6, 241–256, New York, Academic Press, 471 pp.

    Article  Google Scholar 

  • Miller, Robert G., 1962: Statistical prediction by discriminant analysis. Meteor. Monogr., 4, No. 25, Boston, Amer. Meteor. Soc. 54 pp.

    Google Scholar 

  • Miyazaki, M., T. Ueno and S. Unoki, 1961–62: Theoretical investigations of typhoon surges along the Japanese coast. Oceanographical Magazine 13 51–75 (Part 1), 103–117 (Part 2).

    Google Scholar 

  • Nomitsu, Takaharu, 1933a: A theory of the rising stage of drift current in the ocean. Memoirs, College of Science, Kyoto Imperial University (Series A). I. The case of no bottom-current, 16, 161–175; II. The case of a finite bottom-friction depending on the slip velocity, 16, 309–331.

    Google Scholar 

  • Nomitsu, Takaharu, 1933b: On the development of the slope current and the barometric current in the ocean. Memoirs, College of Science, Kyoto Imperial University (Series A). I. The case of no bottom-current, 16, 203–241. II. ( with T. Takegami) Different bottom conditions assumed, 16, 333–351.

    Google Scholar 

  • Nomitsu, Takaharu, 1933c: On the density current in the ocean. Memoirs, College of Science, Kyoto Imperial University (Series A). I. The case of no bottom-current, 16, 261–274; II. The case of no bottom-friction, 16, 383–396; III (with T. Takegami) The case of a finite bottom-friction depending on the slip velocity, 16, 397–408.

    Google Scholar 

  • Nomitsu, Takaharu, 1934: Coast effect upon the ocean current and the sea level. Memoirs, College of Science, Kyoto Imperial University (Series A). I. (with T. Takegami) Steady state, 17, 93–141; II. Changing state, 17, 249–280.

    Google Scholar 

  • Olson, Franklyn C. W., 1950: The currents of western Lake Erie. Ohio State University, Ph.D. Thesis, 370 pp.

    Google Scholar 

  • Pekeris, C. L., and M. Dishon, 1960: Theory of ocean tides. International Union of Geodesy and Geophysics, General Assembly at Helsinki, July-August 1960, Association of Physical Oceanography, preprint N 29.

    Google Scholar 

  • Phillips, Norman A., 1960: Numerical weather prediction. Advances in Computers, 1, 43–90, New York, Academic Press, 317 pp.

    Article  Google Scholar 

  • Platzman, George W., 1958: A numerical computation of the surge of 26 June 1954 on Lake Michigan. Goephysica, 6, 407–438.

    Google Scholar 

  • Priestley, C. H. B., 1959: Turbulent transfer in the lower atmosphere. Chicago, University of Chicago Press, 130 pp.

    Google Scholar 

  • Proudman, J., 1924: On a class of expansions. Proc. London Math. Soc., 24, 131–139.

    Google Scholar 

  • Proudman, J., 1929: The effects on the sea of changes in atmospheric pressure. Monthly Notices, Royal Astronomical Society, Geophysical Supplement, 2, 197–209.

    Article  Google Scholar 

  • Proudman, J., 1953: Dynamical oceanography. London, Methuen, 409 pp.

    Google Scholar 

  • Proudman, J., and A. T. Doodson, 1924: Time relations in meteor-ological effects on the sea. Proc. London Math. Soc., 24, 140–149.

    Google Scholar 

  • Rao, Desiraju B., 1962: The response of a lake to a time-dependent wind stress. University of Chicago, Department of the Geophysical Sciences, M. S. Thesis, 56 pp.

    Google Scholar 

  • Reid, R. O., 1957: Modification of the quadratic bottom-stress law for turbulent channel flow in the presence of surface wind-stress. U. S. Army, Corps of Engineers, Beach Erosion Board, Technical Memorandum 93, 33 pp.

    Google Scholar 

  • Richardson, Lewis F., 1922: Weather prediction by numerical process. Cambridge, Cambridge University Press, 236 pp.

    Google Scholar 

  • Richtmyer, Robert D., 1957: Difference methods for initial-value problems. New York, Interscience Publishers, 238 pp.

    Google Scholar 

  • Schalkwijk, W. F., 1947: A contribution to the study of storm surges on the Dutch Coast. Koninklijk Nederlandsch Meteoro-logisch Instituut, Mededeelingen en Verhandelingen (Series B), 1, (7), 111 pp.

    Google Scholar 

  • Stoker, J. J., 1957: Water waves. New York, Interscience Publishers, 567 pp.

    Google Scholar 

  • Taylor, G. I., 1921: Tidal oscillations in gulfs and rectangular basins. Proc. London Math. Soc. (series 2), 20, 148–181.

    Google Scholar 

  • Van Dantzig, D., and H. A. Lauwerier, 1960: The North Sea problem. IV. Free oscillations of a rotating rectangular sea. Proceedings, Koniklijke Nederlandske Akademie van Wetenschappen (Series A), 63, 339–354.

    Google Scholar 

  • Verber, James L., 1960: Long and short period oscillations in Lake Erie. State of Ohio, Department of Natural Resources, Division of Shore Erosion, 80 pp.

    Google Scholar 

  • Welander, Pierre, 1957: Wind action on a shallow sea: some generalizations of Ekman’s theory. Tellus, 9, 45–52.

    Article  Google Scholar 

  • Welander, Pierre, 1961: Numerical prediction of storm surges. Advances in Geophysics, 8, 316–379, New York, Academic Press, 392 pp.

    Google Scholar 

  • Wilson, Basil W., 1960: Note on surface wind stress over water at low and high wind speeds. J. geophys. Res., 65, 3377–3382.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1963 American Meteorological Society

About this chapter

Cite this chapter

Platzman, G.W. (1963). The Dynamical Prediction of Wind Tides on Lake Erie. In: The Dynamical Prediction of Wind Tides on Lake Erie. Meteorological Monographs, vol 4. American Meteorological Society, Boston, MA. https://doi.org/10.1007/978-1-940033-54-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-940033-54-9_1

  • Publisher Name: American Meteorological Society, Boston, MA

  • Online ISBN: 978-1-940033-54-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics