Skip to main content

Part of the book series: Meteorological Monographs ((METEOR,volume 3))

Abstract

For about 80 years it has been known that cloud and fog droplets condense on nuclei (the so-called condensation nuclei), but only during the past decade, and particularly during the past five years, has our knowledge increased concerning the size, size-distribution, concentration, and composition of these particles which form the so-called aerosol. The first information gained on the composition, size, and number of condensation nuclei was derived from their light-scattering ability. Early investigators drew the correct conclusion that, because of the decrease of the visibility when the relative humidity exceeds approximately 70 percent, most of the condensation nuclei must be hygroscopic. Moeller (1947) found from measurements of the scattering function of the aerosol at different angular distances from the sun that the average radius of the scattering particles is 0.2 μ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 36.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdullah, A. J., 1955: Some aspects of the dynamics of tornadoes. Mon. Wea. Rev., v. 83, pp. 83–94.

    Article  Google Scholar 

  • Albrecht, F., 1931: Theoretische Untersuchungen über die Ablagerung von Staub aus strömender Luft und ihre Anwendung auf die Theorie der Staubfilter. Physik. Z., v. 32, pp. 48–56.

    Google Scholar 

  • Aliverti, G., and G. Lovera, 1950: Sui nuclei de condensazione de origine marittima. Geofis. Pura applic., v. 16, pp. 133–135.

    Article  Google Scholar 

  • Alt, E., and L. Weickmann, 1909: Untersuchungen über Gewitter und Hagel in Süddeutschland (Periode 1893–1907). Beobachtungen der meteor. Stationen im Königreich Bayern. K. B. Meteorolog. Zentralstation, v. 31, 31 pp.

    Google Scholar 

  • Arons, A. B., and C. J. Kientzler, 1954: Vapor pressure of sea salt solutions. Trans. Amer. Geophys. Union, v. 35, pp. 722–728.

    Article  Google Scholar 

  • aufm Kampe, H. J., 1952: Feuchtigkeits verhältnisse in Cirruswolken und die daraus resultierenden Formen der Eiskristalle. Ber. Deut. Wetterd. No. 38, Weickmann-Heft, pp. 298–302.

    Google Scholar 

  • aufm Kampe, H. J., and H. K. Weickmann, 1951: The effectiveness of natural and artificial aerosols as freezing nuclei. J. Meteor., v. 8, pp. 283–288.

    Article  Google Scholar 

  • aufm Kampe, H. J., and H. K. Weickmann, 1952: Particle size distribution in different types of clouds. Proc. Third Wea. Radar Conf., McGill Univ., Montreal, pp. B9–B12.

    Google Scholar 

  • aufm Kampe, H. J., H. K. Weickmann, and H. H. Kedesdy, 1952: Remarks on “Electron-microscope study of snow-crystal nuclei.” J. Meteor., v. 9, pp. 374–375.

    Article  Google Scholar 

  • aufm Kampe, H. J., H. K. Weickmann, and J. J. Kelly, 1951: The influence of temperature on the shape of ice crystals growing at water saturation. J. Meteor., v. 8, pp. 168–174.

    Article  Google Scholar 

  • aufm Kampe, H. J., H. K. Weickmann, and J. J. Kelly, 1956: A continuously recording water content meter. J. Meteor., v. 13, pp. 64–66.

    Article  Google Scholar 

  • Austin, A. R. I., 1952: Wave clouds over Southern England. Weather, v. 7, pp. 50–53.

    Article  Google Scholar 

  • Austin, J. M., 1948: A note on cumulus growth in a non-saturated environment. J. Meteor., v. 5, pp. 103–107. (See also article of the same author: Cumulus convection and entrainment, Compendium of Meteorology.)

    Article  Google Scholar 

  • Batchelor, G. K., 1954: Heat convection and buoyancy effects in fluids. Quart. J. R. Meteor. Soc., v. 80, pp. 339–358.

    Article  Google Scholar 

  • Becker, R., and W. Doering, 1935: Kinetische Behandlung der Keimbildung in übersättigten Dämpfen. Ann. Physik, v. 24, pp. 719–752.

    Article  Google Scholar 

  • Bigg, E. K., 1953: The supercooling of water. Proc. Phys. Soc. London, Sec. B, v. 66 (8), pp. 688–694.

    Article  Google Scholar 

  • Birstein, S. J., 1952: The effect of relative humidity on the nucleating properties of photolyzed silver iodide. Bull. Amer. Meteor. Soc., v. 33, pp. 431–434.

    Google Scholar 

  • Birstein, S. J., 1954: Adsorption studies of heterogeneous phase transitions. Geophys. Res. Pap. No. 32, Geophysics Research Directorate, Air Force Cambridge Research Center, Air Research and Development Command.

    Google Scholar 

  • Bleeker, W., and A. Delver, 1951: Some new ideas on the formation of windspouts and tornadoes. Archiv Meteor. Geophys. Bioklim., (A), v. 4, pp. 220–237.

    Article  Google Scholar 

  • Bolton, J. G., and N. A. Qureshi, 1954: The effects of air temperature and pressure on the decay of silver iodide. Bull. Amer. Meteor. Soc., v. 35, pp. 395–399.

    Google Scholar 

  • Bowen, E. G., 1950: The formation of rain by coalescence. Australian J. Sci. Res., v. A-3, pp. 193–213.

    Google Scholar 

  • Braham, R. R., Jr., 1952: The water and energy budgets of the thunderstorm and their relation to thunderstorm development. J. Meteor., v. 9, pp. 227–242.

    Article  Google Scholar 

  • Brocks, K., 1948: Ueber den täglichen und jährlichen Gang der Höhenabhängigkeit der Temperatur in den unteren 300 Metern der Atmosphäre und ihren Zusammenhang mit der Konvektion. Ber. Deut. Wetterd., No. 5, 30 pp.

    Google Scholar 

  • Bruch, H., 1940: Die vertikale Verteilung von Windgeschwindigkeit und Temperatur in den untersten Metern über der Wasseroberfläche. Veröff. Inst. Meereskunde, Berlin, A, v. 38, 66 pp.

    Google Scholar 

  • Brun, R. J., J. Levine, and K. S. Kleinknecht, 1951: An instrument employing corona discharge for the determination of size distribution in clouds. Tech. Notes Nat. Adv. Comm. Aero., Wash., no. 2458; 53 pp.

    Google Scholar 

  • Brunk, I. W., 1953: Squall lines. Bull. Amer. Meteor. Soc., v. 34, pp. 1–9.

    Google Scholar 

  • Brunt, D., 1927: Tornadoes started by an oil fire. Mon. Wea. Rev., v. 55, pp. 24–25.

    Google Scholar 

  • Bunker, A. F., 1955: An observational study and discussion of counter-gradient heat flows in the atmosphere. Woods Hole Oceanographic Institution, Ref. No. 55–38, 29 pp. (unpublished manuscript).

    Google Scholar 

  • Bunker, A. F., B. Haurwitz, J. S. Malkus, and H. Stommel, 1949: Vertical distribution of temperature and humidity over the Caribbean Sea. Pap. Phys. Ocean. Meteor., Mass. Inst. Tech. and Woods Hole Ocean. Instn., v. 11, No. 1, 82 pp.

    Google Scholar 

  • Byers, H., 1942: Non-frontal thunderstorms. Chicago Univ., Institute of Meteorology, Misc. Rep., No. 3, 26 pp.

    Google Scholar 

  • Craig, R., 1947: Observations of vertical temperature and humidity distribution in the convective layer above the sea surface. Ann. New York Acad. Sci., v. 48, pp. 783–788.

    Article  Google Scholar 

  • Cwilong, B. M., 1947: Sublimation in a Wilson Chamber. Proc. Roy. Soc. London, (A), v. 190, pp. 137–143.

    Article  Google Scholar 

  • Davies, R. M., and G. Taylor, 1950: The mechanics of rising bubbles. Proc. Roy. Soc. London, A, v. 200, pp. 375–390.

    Article  Google Scholar 

  • Dessens, H., 1954: Noyaux de condensation et pluie artificielle. Bull. Obs. du Puy de Dôme, v. 4, pp. 113–119.

    Google Scholar 

  • Diem, M., 1942: Messungen der Groesse von Wolkenelementen. Ann. Hydrogr. Mar. Meteor., v. 70, pp. 142–150.

    Google Scholar 

  • Diem, M., 1948: Messungen der Groesse von Wolkenelementen II. Meteor. Rundschau, no. 9 /10, pp. 261–273.

    Google Scholar 

  • Facy, L., 1951: Eclatement des lames minces et noyeaux de condensation. J. Sci. Meteor., v. 3, pp. 86–98.

    Google Scholar 

  • Facy, L., 1955: La capture des noyeaux de condensation par chocs moléculaires au cours des processus de condensation. Archiv. Meteor. Geophys. Bioklim.. Ser. A, v. 8, pp. 229–236.

    Article  Google Scholar 

  • Faust, H., 1951: Kaltfronten und Gewitter. Ber. Deut. Wetterd., No. 24, 55 pp.

    Google Scholar 

  • Fawbush, E. J., and R. C. Miller, 1954: The types of airmasses in which North American tornadoes form. Bull. Amer. Meteor. Soc., v. 35, pp. 154–165.

    Google Scholar 

  • Fedele, D., and A. O. Vittori, 1953: Rivelazione delle particelle atmosferiche di cloruro con la reazione di Liesegang sensibilizzata fotochimicamente. Revista Meteor. Aeron., v. 13, pp. 14–18.

    Google Scholar 

  • Ferrel, W., 1889: A Popular Treatise on the Winds. New York. John Wiley & Sons, 505 pp.

    Google Scholar 

  • Findeisen, W., 1940: Die Entstehung der 0° Isothermie und die Fraktocumulus Bildung unter Nimbostratus. Meteor. Z., v. 57, pp. 49–54.

    Google Scholar 

  • Findeisen, W., and G. Schultz, 1944: Experimentelle Untersuchungen zur atmosphärischen Eisteilchenbildung I. Forsch., Erfahrung-Ber., Reichs-Wetterd., Reihe A, No. 27, Berlin.

    Google Scholar 

  • Finley, J. P., 1889: Tornadoes. C. C. Hine, New York.

    Google Scholar 

  • Fletcher, R. D., and D. Sartor, 1952: Cirrus. Weatherwise, v. 5, pp. 8–9.

    Article  Google Scholar 

  • Foitzik, L., 1950: Zur meteorologischen Optik von Dunst und Nebel, Teil 2. Z. Meteor., v. 4, pp. 321–329.

    Google Scholar 

  • Fournier D’Albe, E. M., 1955: Giant hygroscopic nuclei in the atmosphere and their role in the formation of rain and hail. Archiv. Meteor. Geophys. Bioklim., Ser. A, v. 8, pp. 216–228.

    Article  Google Scholar 

  • Grimminger, G., 1933: The upward speed of an air current necessary to sustain a hailstone. Mon. Wea. Rev., v. 61, pp. 198–200.

    Article  Google Scholar 

  • Hammer, C., 1938: Untersuchungen ueber Kristallkeime. Ann. Physik, Ser. 5, v. 33, pp. 445–458.

    Article  Google Scholar 

  • Haurwitz, B., 1947: Internal waves in the atmosphere and convection patterns. Ann. New York Acad. Sci., v. 48, pp. 727–748.

    Article  Google Scholar 

  • Hitschfeld, W., and K. L. S. Gunn, 1952: Coalescence of large and small water drops. Geophys. Res. Pap. No. 13; Geophysics Research Division, Air Force Cambridge Research Center, Air Research and Development Command.

    Google Scholar 

  • Hosier, C. L., 1951: On the crystallization of supercooled clouds. J. Meteor., v. 8, pp. 326–331.

    Article  Google Scholar 

  • Hosler, C. R., and C. L. Hosier, 1952: An investigation of the spontaneous freezing point of small quantities of water. Sci. Rep. No. 1, Penn. State College, Contract No. AF 19(604)140.

    Google Scholar 

  • Houghton, H. G., 1950: A preliminary quantitative analysis of precipitation mechanisms. J. Meteor., v. 7, pp. 363–369.

    Article  Google Scholar 

  • Houghton, H., and H. Cramer, 1951: A theory of entrainment in convection patterns. J. Meteor., v. 8, pp. 95–102.

    Article  Google Scholar 

  • Houghton, H. G., and W. H. Radford, 1938: On the measurement of drop size and liquid water content in fogs and clouds. Pap. Phys. Ocean. and Meteor., Mass. Inst. Tech. and Woods Hole Ocean. Instn., v. 6, no. 4, 63 pp.

    Google Scholar 

  • Humphreys, W. J., 1928: The uprush of air necessary to sustain the hailstone. Mon. Wea. Rev., v. 56, p. 314.

    Article  Google Scholar 

  • Inn, E. C. Y., 1951: Photolytic inactivation of ice-forming silver iodide nuclei. Bull. Amer. Meteor. Soc., v. 32, pp. 132–136.

    Google Scholar 

  • Jones, R. F., 1954: Five flights through a thunderstorm belt. Quart. J. R. Meteor. Soc., v. 80, pp. 377–387.

    Article  Google Scholar 

  • Junge, C., 1952a: Die Konstitution des atmosphaerischen Aerosols. Ann. Meteor., v. 5 Beiheft, 55 pp.

    Google Scholar 

  • Junge, C., 1952b: Gesetzmaessigkeiten in der Groessenverteilung atmosphaerischer Aerosole ueber dem Kontinent. Ber. Deut. Wetterd., No. 35, pp. 261–277.

    Google Scholar 

  • Junge, C., 1953: Die Rolle der Aerosole und der gasfoermigen Beimenungen der Luft im Spurenhaushalt der Troposphaere. Tellus, v. 5, pp. 1–26.

    Article  Google Scholar 

  • Junge, C., 1954: The chemical composition of atmospheric aerosols, I: Measurements at Round Hill Field Station June-July 1953. J. Meteor., v. 11, pp. 323–333.

    Article  Google Scholar 

  • Keith, C. H., and A. B. Arons, 1954: The growth of sea-salt particles by condensation of atmospheric water vapor. J. Meteor., v. 11, pp. 173–184.

    Article  Google Scholar 

  • Knelman, F., N. Dombrowski, and D. M. Merritt, 1954: Mecha- nism of the bursting of bubbles. Nature, v. 173, p. 261.

    Article  Google Scholar 

  • Koschmieder, H., 1951: Zur Trombenbildung. (On spout formation). Archiv Meteor. Geophys. Bioklim., Ser. A, v. 3, pp. 382–401.

    Article  Google Scholar 

  • Krastanov, L. A., 1943: Ueber die Bildung und das Wachstum der Eiskristalle. Meteor. Z., v. 60, pp. 15–26.

    Google Scholar 

  • Kumai, M., 1951: Electron microscope study of snow crystal nuclei. J. Meteor., v. 8, pp. 151–156.

    Article  Google Scholar 

  • La Mer, V. K., E. C. Y. Inn, and I. B. A. Wilson, 1950: The methods of forming, detecting, and measuring the size and concentration of liquid aerosols in the size range of 0.01 to 0.25 microns diameter. J. Coll. Sci., v. 5, pp. 471–496.

    Article  Google Scholar 

  • Langmuir, I., and R. B. Blodgett, 1946: A mathematical investigation of water droplet trajectories. USAAF Tech. Report No. 5418, Washington, D. C.

    Google Scholar 

  • Langwell, P. A., 1951a: The onset of rain from cumuli. J. Meteor., v. 8, pp. 354–356.

    Article  Google Scholar 

  • Langwell, P. A., 1951b: Forced convection cell circulation in clear air. Trans. Amer. Geophys. Union, v. 32, pp. 7–14.

    Article  Google Scholar 

  • Langwell, P. A., 1953: A mechanism for convection over the ocean. J. Meteor., v. 10, pp. 187–190.

    Article  Google Scholar 

  • Letzmann, J., 1930: Cumulus Pulsationen. Meteor. Z., v. 47, p. 236.

    Google Scholar 

  • Levine, J., 1950: Statistical explanation of spontaneous freezing of water droplets. Tech. Notes Nat. Adv. Comm. Aero., Wash., No. 2234, 27 pp.

    Google Scholar 

  • Levine, J., and K. S. Kleinknecht, 1951: Adaptation of a cascade impactor to flight measurements of droplet size in clouds. Nat. Adv. Comm. Aero., Wash., RM E51GO5, 28 pp.

    Google Scholar 

  • Lewis, W., 1947: A flight investigation of the meteorological conditions conducive to the formation of ice on airplanes. Tech. Notes Nat. Adv. Comm. Aero., Wash., No. 1393.

    Google Scholar 

  • Lewis, W., and W. H. Hoecker, Jr., 1949: Observations of icing conditions encountered in flight during 1948. Tech. Notes Nat. Adv. Comm. Aero., Wash., No. 1904, 43 pp.

    Google Scholar 

  • Lewis, W., D. B. Kline, and C. P. Steinmetz, 1947: A further investigation of the meteorological conditions conducive to aircrafticing. Tech. Notes Nat. Adv. Comm. Aero., Wash., No. 1424.

    Google Scholar 

  • Lewis, W., and P. Perkins, 1953: Recorded pressure distribution in the outer portion of a tornado vortex. Mon. Wea. Rev., v. 81, pp. 379–385.

    Article  Google Scholar 

  • Ludlam, F. H., 1951: The production of showers by the coalescence of cloud droplets. Quart. J. R. Meteor. Soc., v. 77, pp. 402–417.

    Article  Google Scholar 

  • Ludlam, F. H., 1952a: Orographic cirrus clouds. Quart. J. R. Meteor. Soc., v. 78, pp. 554–562.

    Article  Google Scholar 

  • Ludlam, F. H., 1952b: Hill-wave cirrus. Weather, v. 7, pp. 300–326.

    Article  Google Scholar 

  • Malkus, J. S., 1952: The slopes of cumulus clouds in relation to external wind shear. Quart. J. R. Meteor. Soc., v. 78, pp. 530–542.

    Article  Google Scholar 

  • Malkus, J. S., 1954: Some results of trade cumulus cloud investigation. J. Meteor., v. 11, pp. 220–237.

    Article  Google Scholar 

  • Malkus, J. S., and C. Ronne, 1954: On the structure of some cumulus clouds which penetrated the high tropical troposphere. Tellus, v. 6, pp. 351–366.

    Article  Google Scholar 

  • Malone, T. F., ed., 1951: Compendium of Meteorology. Amer. Meteor. Soc., Boston, 1334 + ix pp.

    Google Scholar 

  • McCullough, S., and P. J. Perkins, 1951: Flight camera for photographing cloud droplets in natural suspension in the atmosphere. Nat. Adv. Comm. Aero., Wash., RM E5OKO1a, 23 pp.

    Google Scholar 

  • McDonald, J. E., 1953a: Erroneous cloud-physics applications of Raoult’s law. J. Meteor., v. 10, pp. 68–70.

    Article  Google Scholar 

  • McDonald, J. E., 1953b: Homogeneous nucleation of supercooled water drops. J. Meteor., v. 10, pp. 416–433.

    Article  Google Scholar 

  • Marshall, J. S., and M. D. Langleben, 1954: A theory of snow crystal habit and growth. J. Meteor., v. 11, pp. 104–120.

    Article  Google Scholar 

  • Mason, B. J., 1952: Spontaneous crystallization of supercooled water. Quart. J. R. Meteor. Soc., v. 78, pp. 22–27.

    Article  Google Scholar 

  • Mason, B. J., 1953: The growth of ice crystals in a supercooled water cloud. Quart. J. R. Meteor. Soc., v. 79, pp. 104–111.

    Article  Google Scholar 

  • Mason, B. J., 1954: Bursting of air bubbles at the surface of sea water. Nature, v. 174, pp. 470–471.

    Article  Google Scholar 

  • May, R. R., 1945: The cascade impacter; an instrument for sampling coarse aerosols. J. Sci. Instrum., v. 22, pp. 187–195.

    Article  Google Scholar 

  • Melzak, Z. A., 1953: The effect of coalescence in certain collision processes. Quart. Applied Math., v. 11, pp. 231–234.

    Google Scholar 

  • Melzak, Z. A., and W. Hitschfeld, 1953: A mathematical treatment of random coalescence. Scientific Report MW-11. McGill University MacDonald Physics Lab. “Stormy Weather” Research Group.

    Google Scholar 

  • Moeller, F., 1943: Labilisierung von Schichtwolken durch Strahlung. Meteor. Z., v. 60, pp. 212–213.

    Google Scholar 

  • Moeller, F., 1947: Einfluss der sekundären Streustrahlung. Par. 9 of article by K. Bullrich: Die Streuung des Lichts in trueber Luft. Optik, v. 2, pp. 301–325.

    Google Scholar 

  • Moltschanoff, P., 1924: Die Höhe der Wolken im Zusammenhang mit den Feuchtigkeitsverhältnissen an der Erdoberfläche. Meteor. Z., v. 41, p. 286.

    Google Scholar 

  • Moore, D. J., 1952: Measurements of condensation nuclei over the North Atlantic. Quart. J. R. Meteor. Soc., v. 78, pp. 596–602.

    Article  Google Scholar 

  • Mossop, S. C., 1955: The freezing of supercooled water. Proc. Phys. Soc. London, B, v. 68, pp. 193–208.

    Article  Google Scholar 

  • Murgatroyd, R. J., and P. Goldsmith, 1953: Cirrus clouds over southern England. Paper of the Meteor. Research Comm. (London), M. R. P. No. 833, 13 pp.

    Google Scholar 

  • Nakaya, U., and A. Matsumoto, 1953: Evidence of the existence of a liquid like film on ice surfaces. Snow, Ice, and Permafrost Res. Estab., Res. Paper No. 4, 6 pp.

    Google Scholar 

  • Nakaya, U., and Y. Sekido, 1936: General classification of snow crystals and their frequency of occurrence. J. Faculty Sci. Hokkaido Imper. Univ., Ser. 11, v. 1, pp. 243–264.

    Google Scholar 

  • Neel, Jr., C. B., and C. P. Steinmetz, 1952: The calculated and measured performance characteristics of a heated-wire liquidwater-content meter for measuring icing severity. Tech. Notes Nat. Adv. Comm. Aero., Wash., No. 2615, 59 pp.

    Google Scholar 

  • Newkirk, G., Jr., 1955: Property of the solar aureole. Tech. Memo No. M-1710, Signal Corps Engineering Labs., Ft. Monmouth, N. J., 48 pp.

    Google Scholar 

  • Ogiwara, S., and T. Okita, 1952: Electron microscope study of cloud and fog nuclei. Tellus, v. 4, pp. 233–240.

    Article  Google Scholar 

  • Okita, T., 1952: Electron microscope study of ice crystal nuclei in the natural atmosphere. Scientific Reports of Tohoku Univ., Ser. 5 (Geophys.), v. 4, No. 2.

    Google Scholar 

  • Palmén, E., 1931: Die Beziehung zwischen troposphärischen und stratosphärischen Temperatur- und Luftdruckschwankungen. Beitr. Phys. fr. Atmos., v. 17, p. 102.

    Google Scholar 

  • Palmer, H. P., 1949: Natural ice particle nuclei. Quart. J. R. Meteor. Soc., v. 75, pp. 15–22.

    Article  Google Scholar 

  • Perkins, P. J., 1951: Flight instrument for measurement of liquid-water content in clouds at temperatures above and below freezing. RM E50 J 12 a, Nat. Adv. Comm. Aero., Wash.

    Google Scholar 

  • Petterssen, S. E., 1939: Contribution to the theory of convection. Geofys. Publ., v. 12, No. 9, 23 pp.

    Google Scholar 

  • Pielsticker, U., 1940: Ueber den Aufbau thermischer Aufwind-gebiete. Beitr. Phys. fr. Atmos., v. 27, pp. 1–22.

    Google Scholar 

  • Prandtl, L., 1949: Strömungslehre. Friedr. Vieweg & Sohn, Braunschweig, 407 pp.

    Google Scholar 

  • Pruppacher, H. R., and R. Sanger, 1955: Mechanismus der Vereisung unterkühlter Wassertropfen durch disperse Keimsubstanzen. Z. angew. Math. u. Physik, Part I: v 16, pp. 407–416; Part II: v. 6, pp. 486–493.

    Google Scholar 

  • Radford, W. H., 1938: An instrument for sampling and measuring liquid fog water. Pap. Phys. Ocean Meteor., Mass. Inst. Tech. and Woods Hole Ocean. Instn., v. 6, pp. 19–31.

    Google Scholar 

  • Raethjen, R., 1942: Cumulus Aufwind, Einführung in die Physik der Atmosphäre. Verlag Teubner, Leipzig-Berlin, 125 pp.

    Google Scholar 

  • Rau, W., 1950: Ueber die Wirkungsweise der Gefrierkerne im unterkuehlten Wasser. Z. Naturforsch., v. 5a, pp. 667–675.

    Google Scholar 

  • Rau, W., 1951: Eiskeimbildung durch dielektrische Polarisation. Z. Naturforsch., v. 6a, pp. 649–657.

    Google Scholar 

  • Rau, W., 1954: Der Gefrierkerngehalt der verschiedenen Luftmassen. Meteor. Rundschau, v. 7, pp. 205–211.

    Google Scholar 

  • Rau, W., 1955: Wirkungsbereiche und Haeufigkeit der natuerlichen Gefrierkerne. Archiv Meteor. Geophys. Bioklim., Ser. A, v. 8, pp. 185–203.

    Google Scholar 

  • Ray Choudhuri, S. N., 1952: On thermodynamics of downdrafts. Indian J. Meteor. Geophys., v. 3, pp. 49–52.

    Google Scholar 

  • Rayleigh, Lord, 1916: On the dynamics of revolving fluids. Proc. Roy. Soc. London, (A), v. 93, pp. 148–154.

    Article  Google Scholar 

  • Reitan, C. H., and R. R. Braham, 1954: Observations of salt nuclei over the midwestern United States. J. Meteor., v. 11, pp. 503–506.

    Article  Google Scholar 

  • Reynolds, S. E., W. Hume, B. Vonnegut, and V. J. Schaefer, 1951: Effect of sunlight on the action of silver iodide particles as sublimation nuclei. Bull. Amer. Meteor. Soc., v. 32, p. 47.

    Google Scholar 

  • Richter, A., 1888: Tägliche Aenderungen der Cirrushäufigkeit. Meteor. Z., v. 1, p. 84.

    Google Scholar 

  • Roper, R. D., 1952: Evening waves. Quart. J. R. Meteor. Soc., v. 78, pp. 415–419.

    Article  Google Scholar 

  • Rossmann, F. O., 1953: The physical processes in the development of tornadoes and consequences which influence their dissipation. Conf. Radio Meteor. Univ. Texas, 9–12 Nov. 1953.

    Google Scholar 

  • Royer, L., 1928: Recherches expérimentales sur l’épitaxie ou orientation mutuelle des crystaux d’espèces différentes. Bull. Soc. franc. Minéral, v. 51, p. 7.

    Google Scholar 

  • Ruden, P., 1933: Turbulente Ausbreitungsvorgänge im Freistrahl. Naturwiss., v. 21, pp. 375–378.

    Article  Google Scholar 

  • Rupe, J. H., 1950: Critical impact velocities of water droplets as a problem in injector spray samplings. Progress Rep. No. 4–80. Propulsion Lab. Calif. Inst. Tech.

    Google Scholar 

  • Sartor, D., 1954: A laboratory investigation of collision efficiency, coalescence and electrical charging of simulated cloud droplets. J. Meteor., v. 11, pp. 91–103.

    Article  Google Scholar 

  • Sawyer, J. S., and B. Ilett, 1951: The distribution of medium and high cloud near the jet streams. Meteor. Mag., v. 80, pp. 277–281.

    Google Scholar 

  • Schaefer, V., 1950: Experimental meteorology. J. Appl. Math. Phys., v. 1, pp. 153–236.

    Article  Google Scholar 

  • Schaefer, V., 1953a: Study of the concentration of ice nuclei at the Mt. Washington Observatory. Final report—Project Cirrus, Rep. No. R.L-785, General Electric Res. Lab.

    Google Scholar 

  • Schaefer, V., 1953b: The Mount Washington Observatory for field research. Mount Washington Observatory, News Bull., No. 22, pp. 15–17.

    Google Scholar 

  • Schaefer, V., 1953c: Cloud forms of the jet stream. Tellus, v. 5, pp. 27–31.

    Article  Google Scholar 

  • Schmidt, F. H., 1947: Some speculations on the resistance to the motion of cumuliform clouds. Kon. Nederl. Meteor. Inst., Mededelingen en Verhandelingen B, v. 1, No. 8, 54 pp.

    Google Scholar 

  • Schotland, R. W., 1955: The collision efficiency of cloud droplets. Lecture given at the cloud physics conference at Woods Hole, Mass., Sept. 1955.

    Google Scholar 

  • Schumann, T. E. W., 1940: Theoretical aspects of the size distribution of fog particles. Quart. J. R. Meteor. Soc., v. 66, pp. 195–207.

    Article  Google Scholar 

  • Schwerdtfeger, W., 1938: Ueber die hohen Wolken. Wissensch. Abhandl., Reichsamt Wetterd., No. 5, 33 pp.

    Google Scholar 

  • Scorer, R. S., 1951: Billow clouds. Quart. J. R. Meteor. Soc., v. 77, pp. 235–240.

    Article  Google Scholar 

  • Scorer, R. S., and F. H. Ludlam, 1953: Bubble theory of penetrative convection. Quart. J. R. Meteor. Soc., v. 79, pp. 94–103.

    Article  Google Scholar 

  • Scorer, R. S., and J. S. Malkus, 1955: The erosion of cumulus towers. J. Meteor., v. 12, pp. 43–57.

    Article  Google Scholar 

  • Shaw, D., and B. J. Mason, 1954: The growth of ice crystals from the vapor. Phil. Mag., Ser. 7, v. 46, pp. 249–262.

    Article  Google Scholar 

  • Siedentopf, H., 1947: Zur Optik des atmosphaerischen Dunstes 1. Z. Meteor., v. 1, pp. 417–422.

    Google Scholar 

  • Smith, E. J., and K. J. Heffernan, 1954: Airborne measurements of the concentration of natural and artificial freezing nuclei. Quart. J. R. Meteor. Soc., v. 80, pp. 182–197.

    Article  Google Scholar 

  • Smith, E. J., K. J. Heffernan, and B. K. Seely, 1955: The decay of ice nucleating properties of silver iodide in the atmosphere. J. Meteor., v. 12, pp. 379–385.

    Article  Google Scholar 

  • Smoluchowski, M. von, 1917: Mathematical theory of the kinetics of the coagulation of colloidal solutions. Z. physik. Chem., v. 92, pp. 129–168.

    Google Scholar 

  • Soulage, G., 1955: Résultats préliminaires d’une étude expérimentale des noyeaux glaçogènes naturels. Archiv Meteor. Geophys. Bioklim., Ser. A (Meteor. Geophys.), v. 8, pp. 211–215.

    Article  Google Scholar 

  • Spaete, W., 1938: Blindflug. Handbuch des Segelfliegens. Franckhsche Verlagsbuchhandlung, Stuttgart, 336 pp. (ref. p. 250 ).

    Google Scholar 

  • Squires, P., 1952: The growth of cloud drops by condensation. Australian J. Sci. Res., Ser. A, v. 5, pp. 59–86.

    Google Scholar 

  • Squires, P., and C. A. Gillespie, 1952: A cloud droplet sampler for use on aircraft. Quart. J. R. Meteor. Soc., v. 78, pp. 387–392.

    Article  Google Scholar 

  • Staats, W., and C. M. Turrentine, 1955: Some observations and radar pictures of the Blackwell and Udall tornadoes of May 25, 1955. Paper presented at the Meeting Amer. Meteor. Soc., Stillwater, Okla., 3–5 Oct. 1955.

    Google Scholar 

  • Staff, Severe Weather Warning Center, 1955: Air structure near areas of extensive hail damage. Bull. Amer. Meteor. Soc., v. 36, pp. 475–481.

    Google Scholar 

  • Stommel, H., 1947: Entrainment of air into a cumulus cloud. J. Meteor., v. 4, pp. 91–94.

    Article  Google Scholar 

  • Stommel, H., 1951: Entrainment of air into a cumulus cloud, II. J. Meteor., v. 8, pp. 127–129.

    Article  Google Scholar 

  • Stout, G. E., and F. A. Huff, 1953: Radar records Illinois tornado- genesis. Bull. Amer. Meteor. Soc., v. 34, pp. 281–284.

    Google Scholar 

  • Suckstorff, G. A., 1936: Beiträge zur Dynamik der Regenschauer. Göttinger Nachr., Math.-Phys. Klasse, Neue Folge, Fachgruppe II, v. 2, pp. 9–49.

    Google Scholar 

  • Suckstorff, G. A., 1939: Die Ergebnisse der Untersuchungen an tropischen Gewittern und einigen anderen Erscheinungen. Gerlands Beitr. Geophys., v. 55, p. 138.

    Google Scholar 

  • Taylor, G., 1951: The formation of a blast wave by a very intense explosion. II. The atomic explosion of 1945. Proc. Roy. Soc., London, A, v. 201, pp. 175–186.

    Article  Google Scholar 

  • Telford, J. W., 1955: A new aspect of coalescence theory. J. Meteor., v. 12, pp. 436–444.

    Article  Google Scholar 

  • Telford, J. W., N. S. Thorndike, and E. G. Bowen, 1955: The coalescence between small water drops. Quart. J. R. Meteor. Soc., v. 81, pp. 241–250.

    Article  Google Scholar 

  • Tepper, M., 1950a: On the origin of tornadoes. Bull. Amer. Meteor. Soc., v. 31, pp. 311–314.

    Google Scholar 

  • Tepper, M., 1950b: Radar and synoptic analysis of a tornado situation. Mon. Wea. Rev., v. 78, pp. 170–176.

    Article  Google Scholar 

  • Tepper, M., 1952: The application of the hydraulic analogy to certain atmospheric flow problems. Weather Bureau, Res. Pap. No. 35, 50 pp.

    Google Scholar 

  • Tepper, M., 1954: Pressure jump lines in midwestern United States January–August 1951. Weather Bureau, Res. Pap. No. 37, 70 pp.

    Google Scholar 

  • Thunderstorm Project, 1948: A report on thunderstorm conditions affecting flight operations. Weather Bureau, Tech. paper No. 7, 32 pp.

    Google Scholar 

  • Tietjens, O., 1929: Hydro- und Aeromechanik nach Vorlesungen von L. Prandtl. Berlin, Julius Springer, v. 1, 238 pp.

    Google Scholar 

  • Tollmien, W., 1926: Berechnung turbulenter Ausbreitungsvorgänge. Z. angew. Math. Mech., v. 6, pp. 468–478.

    Article  Google Scholar 

  • Twomey, S., 1954: The composition of hygroscopic particles in the atmosphere. J. Meteor., v. 11, pp. 334–338.

    Article  Google Scholar 

  • Vaughan, H. C., 1954: The spontaneous freezing temperatures of melted snow and of small water drops. Bull. Amer. Meteor. Soc., v. 35, pp. 52–55.

    Google Scholar 

  • Vierhout, R. R., 1949: On the formation of drops in clouds and fog. Kon. Nederl. Meteor. Inst., De Bilt, Nederland No. 125, Mededeelingen en Verhandelingen, Ser. B, Deel 2, No. 12, 20 p.

    Google Scholar 

  • Vierhout, R. R., 1950: On the formation of rain in clouds not reaching up to the freezing level. J. Meteor., v. 7, pp. 223–226.

    Article  Google Scholar 

  • Vonnegut, B., 1947: The nucleation of ice formation by silver iodide. J. Appl. Phys., v. 18, pp. 593–595.

    Article  Google Scholar 

  • Vonnegut, B., and Neubauer, 1951: Recent experiments on the effect of ultra-violet light on silver iodide nuclei. Bull. Amer. Meteor. Soc., v. 32, p. 356.

    Google Scholar 

  • Warner, J., and T. D. Newnham, 1952: A new method of measurement of cloud water content. Quart. J. R. Meteor. Soc., v. 78, pp. 46–52.

    Article  Google Scholar 

  • Weickmann, H. K., 1945: Formen und Bildung atmosphärischer Eiskristalle. Beitr. Phys. fr. Atm., v. 28, pp. 12–52.

    Google Scholar 

  • Weickmann, H. K., 1949: Die Eisphase in der Atmosphäre. Ber. Deut. Wetterd., No. 6, 54 pp.

    Google Scholar 

  • Weickmann, H. K., 1950: “Biologie” der Schneekristalle. Umschau, v. 50, pp. 116–119.

    Google Scholar 

  • Weickmann, H. K., 1951: A theory of the formation of ice crystals. Archiv Meteor. Geophys. Bioklim., Ser. A, v. 4, pp. 309–323.

    Article  Google Scholar 

  • Weickmann, H. K., 1953: Observational material on the formation of precipitation in cumulonimbus clouds. Pp. 66–138 in Thunderstorm Electricity, ed. by H. Byers; Univ. Chicago Press.

    Google Scholar 

  • Weickmann, H. K., and H. J. aufm Kampe, 1953: Physical properties of cumulus clouds. J. Meteor., v. 10, pp. 311–314.

    Article  Google Scholar 

  • Weyl, W. A., 1951: Surface structure of water and some of its physical and chemical manifestations. Jour. Coll. Sci., v. 6, pp. 389–405.

    Article  Google Scholar 

  • Woodcock, A. H., 1952: Atmospheric salt particles and raindrops. J. Meteor., v. 9, pp. 200–212.

    Article  Google Scholar 

  • Woodcock, A. H., 1953: Salt nuclei in marine air as a function of altitude and wind force. J. Meteor., v. 10, pp. 362–371.

    Article  Google Scholar 

  • Woodcock, A. H., C. F. Kientzler, A. Arons, and D. C. Blanchard, 1953: Giant condensation nuclei from bursting bubbles. Nature, v. 172, pp. 1144–1145.

    Article  Google Scholar 

  • Woodcock, A. H., and J. Wyman, 1947: Convective motion in air over the sea. Ann. New York Acad. Sci., v. 48, pp. 749–776.

    Article  Google Scholar 

  • Workman, E. J., and S. E. Reynolds, 1950: Electrical phenomena occurring during the freezing of dilute aqueous solutions and their possible relationship to thunderstorm electricity. Phys. Rev., v. 78, pp. 254–259.

    Article  Google Scholar 

  • Wright, W. L., 1936: The size of atmospheric nuclei. Proc. Phys. Soc. London, v. 48, pp. 675–689.

    Article  Google Scholar 

  • Wüst, G., 1937: Temperatur- und Dampfdruckgefaelle in den untersten Metern über der Meeresoberfläche. Meteor. Z., v. 54, pp. 4–9.

    Google Scholar 

  • Yamamota and Ohtake, 1953: ( See H. Dessens, 1954 ).

    Google Scholar 

  • Yates, A. H., D. G. James, L. Welch, and F. H. Ludlam, 1953: Fair weather cumulus. Quart. J. R. Meteor. Soc., v. 79, pp. 420–436.

    Article  Google Scholar 

  • Zaytsev, V. A., 1950: Vodnost’ i raspredelnie Kapel’v Kuchevykh oblakakh. (Water content and distribution of drops in cumulus clouds.) Glay. Geofiz. Observai; Trudy 19, pp. 122–132.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alfred K. Blackadar

Rights and permissions

Reprints and permissions

Copyright information

© 1957 American Meteorological Society

About this chapter

Cite this chapter

aufm Kampe, H.J., Weickmann, H.K. (1957). Physics of Clouds. In: Blackadar, A.K. (eds) Meteorological Research Reviews. Meteorological Monographs, vol 3. American Meteorological Society, Boston, MA. https://doi.org/10.1007/978-1-940033-31-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-940033-31-0_1

  • Publisher Name: American Meteorological Society, Boston, MA

  • Online ISBN: 978-1-940033-31-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics