Skip to main content

Reduction of Surface Pressure to Functions Useful in Analysis And Forecasting

  • Chapter
Book cover Meteorological Observations and Instrumentation

Part of the book series: Meteorological Monographs ((METEOR,volume 11))

  • 105 Accesses

Abstract

The author derives a basic differential expression, designated by G, having the form of a vector point function over the earth’s surface and dependent only upon surface data. Since G is designed to be directly proportional to the horizontal pressure gradient force at the surface, it is the parameter which governs the surface geostrophic wind vector V gs .

A rational method of reduction of pressure to sea level is developed, free from what is inherent in the conventional methods of reduction, namely, the arbitrarily defined “mean virtual temperature of the fictitious air column,” T mv . This is customarily taken as some function of the surface temperature and the height of the station above sea level. The derived, rational method of reduction given in this paper yields P0=P s eMHsB, where P0 is the pressure reduced to sea level, P s the station pressure, M a well-known physical constant, (g0/R), H s the geopotential height of the station above sea level, and B a continuous function of the coordinates of the station, having the dimensions of the reciprocal of absolute temperature. A technique based on the method of least squares is indicated for the determination of the parameters involved in B as would be required at World Weather Analysis Centers for the various stations under consideration, e.g., covering a full continent. It is shown that one can calculate values of G accurately for points on the earth’s surface in terms of the horizontal gradient of P0 and some other precisely specified auxiliary quantities. The effect of the presence of parameter B in P0 and the auxiliary quantities is eliminated in the formula for G; hence, G will be independent of B.

Some applications of G and other pressure data are indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 36.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beckwith, W. B., 1946: Why subterranean isobars? Bull. Amer. Meteor. Soc., 27, 438–443.

    Google Scholar 

  • Bellamy, J. C., 1945: The use of pressure altitude and altimeter corrections in meteorology. J. Meteor., 2, 1–79.

    Article  Google Scholar 

  • Bigelow, F. H., 1900–01: Report on the barometry of the United States, Canada, and the West Indies. Report of the Chief of the Weather Bureau, Vol. II, Washington, D. C.

    Google Scholar 

  • Bigelow, F. H., 1904: The circulation in cyclones and anticyclones with precepts for forecasting by auxiliary charts on the 3,500-foot and 10,000-foot planes. Mon. Wea. Rev., 32, 212–216.

    Article  Google Scholar 

  • Bouet, M., 1957: Les Alpes dans le camp de pression. Météorologie, Commun. presented at the IV Intern. Congress of Alpine Meteorology, Nos. 45–46, 279–282.

    Google Scholar 

  • Deming, W. E., 1943, 1964: Statistical Adjustment of Data. New York, Wiley, 1943; New York, Dover, 1964, 261 pp.

    Google Scholar 

  • Dietsch, M., 1918: Untersuchungen über die Änderungen des Windes mit der Höhe in Zyklonen. Veröffentlichungen des Geophysikalischen Instituts der Universität Leipzig, Band II, Heft 5, 197–234.

    Google Scholar 

  • Dulmage, A. L., and N. S. Mendelsohn, 1962: On the inversion ôf sparse matrices. Math. Comput., 16, 494–496.

    Article  Google Scholar 

  • Dwyer, P. S., 1951: Linear Computations. New York, Wiley, 344 pp.

    Google Scholar 

  • Eliassen, A., 1944: On the correction and reduction of barometer readings. Geofys. Publikasjoner, 13, No. 11, 20 pp.

    Google Scholar 

  • Faddeev, D. K., and V. N. Faddeeva, 1963: Computational Methods of Linear Algebra. San Francisco, Freeman & Co., 620 pp. (transl. from the Russian version).

    Google Scholar 

  • Faddeeva, V. N., 1959: Computational Methods of Linear Algebra. New York, Dover, 252 pp. (transl. from the Russian version).

    Google Scholar 

  • Ferrell, W., 1886: Report on reduction of barometric pressure to sea level and standard gravity. Appendix 23 of the Annual Report of the Chief Signal Officer, U. S. War Dept., Washington, D. C.

    Google Scholar 

  • Forsythe, G. E., and C. B. Moler, 1967: Computer Solution of Linear Algebraic Systems. Englewood Cliffs, N. J., Prentice-Hall, 148 pp.

    Google Scholar 

  • Fujita, T., and H. A. Brown, 1957: A revised method of pressure reduction. Dept. of Meteorology, University of Chicago, Tech. Rept., No. 4, Contract Cwb 8950, 9 pp.

    Google Scholar 

  • Fujiwhara, S., 1921: Pressure maps at three kilometers in Japan. Mon. Wea. Rev., 49, 571–572.

    Article  Google Scholar 

  • Giâo, A., 1957: Sur les champs de pression et de temperature quasi-stationnaires de la region Alpine. Météorologie, Commun. presented at the IV Intern. Congress of Alpine Meteorology, Nos. 45–46, 283–290.

    Google Scholar 

  • Gödecke, K., 1953: 1. Praktische Methoden zur Reduktion von Luftdrucken auf Meeresniveau. 2. Barometertabellen. Tech. Mitteilungen des Instrumentenamtes Nord des Deutschen Wetterdienstes, No. 25.

    Google Scholar 

  • Harrison, L. P., 1957: Report on the problem of “Reduction of Pressure.” Report of the Working Group on Barometry to the World Meteorological Organization, Commission for Instruments and Methods of Observation ( CIMO-II ), Paris, 118 pp.

    Google Scholar 

  • Harrison, L. P., 1963: Manual of barometry (WBAN). Government Printing Office, Washington, D. C.

    Google Scholar 

  • Hesselberg, Th., and H. U. Sverdrup, 1914: Über den Einfluss der Gebirge auf die Luftbewegung längs der Erodberfläche und auf der Druckverteilung. Veröffentl. Geophys. Inst. der Universität Leipzig, Zweite Serie, Band I, Heft 4, 101–116.

    Google Scholar 

  • Kobayasi, T., 1922a: A cyclone which crossed the Korean Peninsula and the variation of its polar front. Quart. J. Roy. Meteor. Soc., 48, 169–184.

    Article  Google Scholar 

  • Kobayasi, T., 1922b: A cyclone which crossed the Korean Peninsula. Mon. Wea. Rev., 50, 356.

    Article  Google Scholar 

  • Leonov, M. P., 1952: On reducing pressure to sea level at meteorological stations situated at a considerable elevation. Meteor. i Gidrolog., No. 5, 37–41.

    Google Scholar 

  • List, R. J., 1968: Smithsonian Meteorological Tables, 6th ed. Washington, D. C., Smithsonian Institution, 527 pp.

    Google Scholar 

  • Little, D. M., 1931: Some effects of California mountain barriers on upper air winds and sea-level isobars. Mon. Wea. Rev., 59, 376–380.

    Article  Google Scholar 

  • Little, D. M., and E. M. Vernon, 1934: Reduction of the barometric pressure over the plateau to the 5,000-foot level. Mon. Wea. Rev., 62, 149–155.

    Article  Google Scholar 

  • Maksié, B., 1956: Eine Methode der Barometerreduktion auf das Meeresniveau. Zagreb, Jugoslavenska Akademija Znanosti I Umjetnosti, Geophys. Inst., University of Zagreb.

    Google Scholar 

  • Meisinger, C. L., 1920a: Preliminary steps in the making of free-air pressure and wind charts. Mon. Wea. Rev., 48, 251–263.

    Article  Google Scholar 

  • Meisinger, C. L., 1920b: The making of upper air pressure maps from observed wind velocities. Mon. Wea. Rev., 48, 697–701.

    Article  Google Scholar 

  • Meisinger, C. L., 1921a: The Toronto symposium on barometric reductions. Mon. Wea. Rev., 49, 655–657.

    Article  Google Scholar 

  • Meisinger, C. L., 192lb: Progress in making free-air pressure and wind charts. Mon. Wea. Rev., 49, 238–239.

    Article  Google Scholar 

  • Meisinger, C. L., 1922a: The pressure distribution at various levels during the passage of a cyclone across the plateau region of the United States. Mon. Wea. Rev., 50, 347–356.

    Article  Google Scholar 

  • Meisinger, C. L., 1922b: The preparation and significance of free-air pressure maps for the Central and Eastern United States. Mon. Wea. Rev., 50, 453–468.

    Article  Google Scholar 

  • Meisinger, C. L., 1922c: The preparation and significance of free-air pressure maps for the Central and Eastern United States. Mon. Wea. Rev., Supplement No. 21, 77 pp.

    Google Scholar 

  • Meisinger, C. L., 1923a: Concerning the accuracy of free-air pressure maps. Mon. Wea. Rev., 51, 190–199.

    Article  Google Scholar 

  • Meisinger, C. L., 1923b: The law of pressure ratios and its application to the charting of isobars in the lower levels of the troposphere. Mon. Wea. Rev., 51, 437–448.

    Article  Google Scholar 

  • Musaelyan, Sh. A., 1959: The influence of the earth’s orography on sea level pressure. Bull. Acad. Sci., USSR, Geophys., No. 5, 354–358.

    Google Scholar 

  • Novsesyan, R. A., 1960: The reduction of air pressure to sea level by the method of approximations. Izv. Akad. Nauk Armyanskoy SSR, Ser. Tekhn. Nauk, 13, No. 3, 55–58.

    Google Scholar 

  • Phillips, N. A., 1957: A coordinate system having some special advantages for numerical forecasting. J. Meteor., 14, 184–185.

    Article  Google Scholar 

  • Portig, W., 1957: Bericht über Messungen zur Reduktion des Barometerstandes auf den Meeresspiegel. Meteor. Rundschau, 10, Heft 2, 42–44.

    Google Scholar 

  • Sangster, W. E., 1960: A method of representing the horizontal pressure force without reduction of station pressures to sea level. J. Meteor., 17, 166–176.

    Article  Google Scholar 

  • Sangster, W. E., 1967: Diurnal surface geostrophic wind variations over the Great Plains. Central Region Tech. Memo. 13, Kansas City, Mo., ESSA, Weather Bureau, 16 pp.

    Google Scholar 

  • Schüepp, M., 1953: Vergleich der verschiedenen Methoden der Luftdruckreduktion auf das Meeresniveau. Wien, Wetter Leben, Jahrg., 5, 15–18.

    Google Scholar 

  • Sangster, W. E., 1962: Die Reduktion des Luftdrucks auf das Meeresniveau. Vierteljahrsschr. Naturforsch. Ges. Zurich, 107, Heft 2, 65–100.

    Google Scholar 

  • Sekiguchi, R., 1922: High-level isobars as used in every-day weather service. Mon. Wea. Rev., 50, 242–243.

    Article  Google Scholar 

  • Shuman, F. G., 1957: On the problem of comparing station pressures at varying elevations. Office Note No. 7, Washington, D. C., Joint Numerical Weather Prediction Unit, 10 pp.

    Google Scholar 

  • Shuman, F. G., and J. B. Hovermale, 1968: An operational six-layer primitive equation model. J. Appl. Meteor., 7, 525–547.

    Article  Google Scholar 

  • Taljaard, J. J., and W. Schmitt, 1958: Reduction of pressure to sea level over the plateau of Southern and East Africa. Weerburo, South Africa, Notos, 7, No. 3 /4, 171–184.

    Google Scholar 

  • Waugh, F. V., and P. S. Dwyer, 1945: Compact computation of the inverse of a matrix. Ann. Math. Statis., 16, 259–271.

    Article  Google Scholar 

  • Wendroff, B., 1966: Theoretical Numerical Analysis. New York, Academic Press, 239 pp.

    Google Scholar 

  • Whipple, F. J. W., 1924: Comments on the law of pressure ratios. Mon. Wea. Rev., 52, 94–95.

    Article  Google Scholar 

  • Whittaker, E. T., and G. Robinson, 1944, 1966: The Calculus of Observations. Princeton, N. J., Van Nostrand, 4th ed. ( 1944 ); New York, Dover (1966).

    Google Scholar 

  • Wilkinson, J. H., 1961: Error analysis of direct methods of matrix inversion. J. Assoc. Comput. Mach., 8, 281–330.

    Article  Google Scholar 

  • Wilkinson, J. H., 1963: Rounding Errors in Algebraic Processes. Englewood Cliffs, N. J., Prentice-Hall, 161 pp.

    Google Scholar 

  • Williams, N. P., 1959: A method of analysis of surface geostrophic winds in mountainous regions. Sci. Rept. No. 6, Dept. of Meteorology and Climatology, University of Washington, AF Contract 19 (604)-3063, 47 pp.

    Google Scholar 

  • World Meteorological Organization, 1954: Reduction of atmospheric pressure. Tech. Note No. 7, WMO-No. 36. TP.12, Geneva, 35 pp.

    Google Scholar 

  • World Meteorological Organization, 1964: Note on the standardization of pressure reduction methods in the international network of synoptic stations. Tech. Note No. 61, WMO-No. 154. TP. 74, Geneva, Rept of a Working Group of the Commission for Synoptic Meteorology, 40 pp.

    Google Scholar 

  • World Meteorological Organization, 1968: Methods in use for the reduction of atmospheric pressure. Tech. Note No. 91, WMO-No. 226. TP. 120, Geneva, 21 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

S. Teweles J. Giraytys

Rights and permissions

Reprints and permissions

Copyright information

© 1970 American Meteorological Society

About this chapter

Cite this chapter

Harrison, L.P. (1970). Reduction of Surface Pressure to Functions Useful in Analysis And Forecasting. In: Teweles, S., Giraytys, J. (eds) Meteorological Observations and Instrumentation. Meteorological Monographs, vol 11. American Meteorological Society, Boston, MA. https://doi.org/10.1007/978-1-935704-35-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-935704-35-5_17

  • Publisher Name: American Meteorological Society, Boston, MA

  • Online ISBN: 978-1-935704-35-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics