Skip to main content

Inherent Difficulties in Hail Probability Prediction

  • Chapter
Hail: A Review of Hail Science and Hail Suppression

Part of the book series: Meteorological Monographs ((METEOR,volume 16))

Abstract

The difficulties in hail prediction are discussed with reference to a set of conditions thought to be necessary and sufficient for the production of large hail. These conditions are abstracted from diagnostic studies with a numerical cloud model which includes hydrometeor growth by vapor deposition and stochastic collection, hail embryo formation by drop freezing, and hail embryo injection. The physical reasoning, including the major assumptions and limitations of the early prediction methods and recent numerical models are reviewed and the necessity for more explicit condensation and ice forming nuclei measurements is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 36.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • de Almeida, F. C., 1977: Collision efficiency, collision angle and impact velocity of hydrodynamically interacting cloud droplets; a numerical study. J. Atmos. Sci., 34, 1286–1292.

    Article  Google Scholar 

  • Bleck, R., 1970: A fast approximative method for integrating the stochastic coalescence equation. J. Geophys. Res., 75, 5165–5171.

    Article  Google Scholar 

  • Browning, K. A., and G. B. Foote, 1976: Airflow and hail growth in supercell storms and some implications for hail suppression. Quart. J. Roy. Meteor. Soc., 102, 499–533.

    Article  Google Scholar 

  • Danielsen, E. F., R. Bleck, and D. Morris, 1972: Hail growth by stochastic collection in a cumulus model. J. Atmos. Sci., 29, 133–155.

    Article  Google Scholar 

  • Fawbush, E. F., and R. Miller, 1953: A method for forecasting hailstone size at the earth’s surface. Bull. Amer. Meteor. Soc., 34, 235–244.

    Google Scholar 

  • Foster, D. S., and F. Bates, 1956: A hail size forecasting technique. Bull. Amer. Meteor. Soc., 37, 135–141.

    Google Scholar 

  • Haagenson, P. L., and E. Danielsen, 1972: Operational steady-state model. NCAR internal report, 29 pp.

    Google Scholar 

  • Humphreys, W. J., 1928: The uprush of air necessary to sustain the hailstone. Mon. Wea. Rev., 56, 314.

    Article  Google Scholar 

  • Kessler, E., P. J. Feteris, and E. A. Newburg, 1963: Role of microphysical processes in shaping vertical profiles of precipitation and clouds. Preprints Tenth Weather Radar Conf., Washington, D. C., Amer. Meteor. Soc., 92–97b.

    Google Scholar 

  • Knight, C. A., and N. C. Knight, 1970: Hailstone embryos. J. Atmos. Sci., 27, 659–666.

    Article  Google Scholar 

  • Kozub, G., and C. Thompson, 1965: Synoptic survey of the 1964 hail season in Alberta. Canada Dept. of Transport, Meteor. Branch, CIR-4219, TEC-565, 23 pp.

    Google Scholar 

  • Longley, R. W., and C. Thompson, 1965: A study of the causes of hail. J. Appl. Meteor., 4, 69–82.

    Article  Google Scholar 

  • Meeker, R. I., Jr., 1951: An approach to the hail forecast problem. American Airlines, Inc., Los Angeles International Airport.

    Google Scholar 

  • Miller, R. C., 1967: Semi-objective evaluation of the relative importance or parameters favoring production of severe storms. Preprints Fifth Conf. Severe Local Storms, St. Louis, Amer. Meteor. Soc., 2–9.

    Google Scholar 

  • Morgan, G. M., Jr., 1970: An examination of the wet-bulb zero as a hail forecasting parameter in the Po Valley, Italy. J. Appl. Meteor., 9, 537–540.

    Article  Google Scholar 

  • Renick, J. H., 1971: Radar reflectivity profiles of individual cells in a persistent multicellular Alberta hailstorm. Preprints Seventh Conf Severe Local Storms, Kansas City, Amer. Meteor. Soc., 63–70.

    Google Scholar 

  • Schnell, R. C., and G. Vali, 1973: World-wide source of leaf- derived freezing nuclei. Nature, 246, 212–213.

    Article  Google Scholar 

  • Sly, W. K., 1965: A convective index in relation to hail. Canada Dept. of Transport, Meteor. Branch, CIR-4240, TEC-573, 30 pp.

    Google Scholar 

  • Towery, N. G., and S. Changnon, Jr., 1970: Characteristics of hail producing radar echoes in Illinois. Mon. Wea. Rev., 98, 346–353.

    Article  Google Scholar 

  • Weinstein, A. I., and L. G. Davis, 1968: A parameterized numerical model of cumulus convection. Pennsylvania State University Rept. No. 11, NSF Grant GA-777, 50 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

G. Brant Foote Charles A. Knight

Rights and permissions

Reprints and permissions

Copyright information

© 1977 American Meteorological Society

About this chapter

Cite this chapter

Danielsen, E.F. (1977). Inherent Difficulties in Hail Probability Prediction. In: Foote, G.B., Knight, C.A. (eds) Hail: A Review of Hail Science and Hail Suppression. Meteorological Monographs, vol 16. American Meteorological Society, Boston, MA. https://doi.org/10.1007/978-1-935704-30-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-935704-30-0_6

  • Publisher Name: American Meteorological Society, Boston, MA

  • Online ISBN: 978-1-935704-30-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics