Skip to main content

The Characteristics of Natural Hailstones and Their Interpretation

  • Chapter
Hail: A Review of Hail Science and Hail Suppression

Part of the book series: Meteorological Monographs ((METEOR,volume 16))

Abstract

Present knowledge of the characteristics of natural hailstones and their interpretation is reviewed. The theory of hailstone growth is first presented as this defines the terminology used in discussing the growth of hail. Broadly, the growth of the various hailstone layers may be described as “dry” or “wet” depending on whether or not all of the accreted supercooled droplets can be frozen by the forced ventilation processes of heat conduction and evaporation from the hailstone surface. The nature of the ice deposited depends on the particular regime in which the layer was formed. In the wet growth regime, it is usual for the excess unfrozen water to be incorporated in the ice structure to form a “spongy” deposit.

The characteristics of hailstones are then discussed. These include their shape and size, the nature of the embryos, their layer and lobe structure, and the isotopic composition and particulate content of the layers. Sections on the aerodynamic behaviour and the growth parameters (density, collection efficiency, and drag and heat coefficients) of hailstones are also included. These are important because they affect the growth and heat balance equations in the theoretical treatment.

Finally, methods of hailstone analysis and the interpretation of the data so obtained are described. The current main methods of analysis are determinations of the isotopic composition, the crystal size and orientation distributions, and the air bubble concentrations and size distributions in the individual hailstone layers. These indicate the ambient temperatures, liquid water concentrations and, to a lesser degree, the cloud droplet sizes at and from which the layers were formed. The analyses to date suggest that large hailstones remain balanced in their respective updrafts between about the −20 and −30°C levels for most of their growth history. This means that the updrafts increase with time or, alternatively, that the hailstones move around the main cores of the updrafts in such a way that they encounter increasing updraft speeds. Variations in the opacity of hailstone layers are due to fluctuations in the liquid water concentration, by as much as 30 percent. On the assumption that the median volume radius of the cloud droplets is ~ 10 μm, the liquid water concentrations in the updrafts are approximately the adiabatic values. It is pointed out, however, that there are assumptions underlying the analytical techniques used in the analyses and these have yet to be fully confirmed.

The National Center for Atmospheric Research is sponsored by the National Science Foundation. Part of the work reported herein was performed as a part of, and with some support from, the National Hail Research Experiment, managed by the National Center for Atmospheric Research and sponsored by the Weather Modification Program, Research Applications Directorate, National Science Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 36.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aufdermaur, A. N., and J. Joos, 1967: A wind tunnel investigation on the local heat transfer from a sphere, including the influence of turbulence and roughness. J. Appl. Math. Phys., 18, 852–866.

    Article  Google Scholar 

  • Aufdermaur, A. N., R. List, W. C. Mayes and M. R. De Quervain, 1963: Kristall-achsenlagen in Hagelkoernern. Z. Angew. Math. Phys., 14, 574–589.

    Article  Google Scholar 

  • Aufdermaur, A. N., and W. C. Mayes, 1965: Correlations between hailstone structures and growth conditions. Proc. Int. Conf. Cloud Physics, Tokyo and Sapporo, pp. 281–285.

    Google Scholar 

  • Bailey, I. H., and W. C. Macklin, 1968a: The surface configuration and internal structure of artificial hailstones. Quart. J. Roy. Met. Soc., 94, 1–11.

    Article  Google Scholar 

  • Bailey, I. H., and W. C. Macklin, 1968b: Heat transfer from artificial hailstones. Quart. J. Roy. Meteor. Soc., 94, 93–98.

    Article  Google Scholar 

  • Barge, B. L., and G. A. Isaac, 1973: The shape of Alberta hailstones. J. Rech. Atmos., 7, 11–20.

    Google Scholar 

  • Bari, S. A., and J. Hallett, 1974: Nucleation and growth of bubbles at an ice-water interface. J. Glaciol., 13, 489–520.

    Google Scholar 

  • Browning, K. A., 1966: The lobe structure of giant hailstones. Quart. J. Roy. Meteor. Soc., 92, 1–14.

    Article  Google Scholar 

  • Browning, K. A., 1967a: Hailstones breaking in mid-air. Weather, 22, 331–334.

    Article  Google Scholar 

  • Browning, K. A., 1967b: The growth environment of hailstones. Meteor. Mag., 96, 202–211.

    Google Scholar 

  • Browning, K. A., and J. G. D. Beimers, 1967: The oblateness of large hailstones. J. Appl. Meteor., 6, 1076–1081.

    Article  Google Scholar 

  • Browning, K. A., and G. B. Foote, 1975: Airflow and hail growth in supercell storms and some implications for hail suppression. NHRE Tech. Rep. No. 75/1, National Center for Atmospheric Research.

    Google Scholar 

  • Browning, K. A., J. Hallett, T. W. Harrold and D. Johnson, 1968: The collection and analysis of freshly fallen hailstones. J. Appl. Meteor., 7, 603–612.

    Article  Google Scholar 

  • Browning, K. A., and F. H. Ludlam, 1962: Airflow in convective storms. Quart. J. Roy. Meteor. Soc., 88, 117–135.

    Article  Google Scholar 

  • Browning, K. A., and W. C. Macklin, 1963: The density and structure of hailstones. Quart. J. Roy. Meteor. Soc., 89, 75–84.

    Article  Google Scholar 

  • Carras, J. N., and W. C. Macklin, 1973: The shedding of accreted water during hailstone growth. Quart. J. Roy. Meteor. Soc., 99, 639–648.

    Article  Google Scholar 

  • Carras, J. N., and W. C. Macklin, 1975a: Air bubbles in accreted ice. Quart. J. Roy. Meteor. Soc., 101, 127–146.

    Article  Google Scholar 

  • Carras, J. N., and W. C. Macklin, 1975b: The opacity of accreted ice. Quart. J. Meteor. Soc., 101, 203–206.

    Article  Google Scholar 

  • Carte, E., 1961: Air bubbles in ice. Proc. Phys. Soc., 77, 757–768.

    Article  Google Scholar 

  • Carte, E., 1964: Hailstorms in Johannesburg, Pretoria and surroundings on January 15 and 16, 1964. CSIR Res. Rep. 228, National Physical Research Laboratory.

    Google Scholar 

  • Carte, E., 1966: Features of Transvaal hailstones. Quart. J. Roy. Meteor. Soc., 92, 290–296.

    Article  Google Scholar 

  • Carte, E., and R. E. Kidder, 1966: Transvaal hailstones. Quart. J. Roy. Meteor. Soc., 92, 382–391.

    Article  Google Scholar 

  • Changnon, S. A., 1971: Note on hailstone size distributions. J. Appl. Meteor., 10, 168–170.

    Article  Google Scholar 

  • Craig, H., 1961: Standard for reporting concentrations of deuterium and oxygen 18 in natural waters. Science, 133, 1833–1834.

    Article  Google Scholar 

  • Craig, H., and L. I. Gordon, 1965: Deuterium and oxygen 18 variations in the ocean and the marine atmosphere. Proc. Conf. Stable Isotopes in Oceanographic Studies and Paleotemperatures, Spoleto, 9–130.

    Google Scholar 

  • Douglas, R. H., 1961: Radar reflectivities of hail samples. Nature, 191, 266–7.

    Article  Google Scholar 

  • Douglas, R. H., 1964: Size distributions in Alberta hail samples. Sci. Rep. MW-42, Stormy Weather Group, McGill University.

    Google Scholar 

  • Ehhalt, D. H., 1967: Deuterium and tritium content of hailstones: Additional information on their growth. Paper presented at Amer. Geophys. Union Meeting, April, Washington, D. C.

    Google Scholar 

  • Ehhalt, D. H., 1971: Verticle profiles and transport of HTO in the troposphere. J. Geophys. Res., 76, 7351–7367.

    Article  Google Scholar 

  • Facy, L., L. Merlivat, G. Nief and R. Roth, 1963: The study of formation of hailstones by isotopic analysis. J. Geophys. Res., 68, 3841–3848.

    Article  Google Scholar 

  • Fraser, D., C. K. Rush and D. Baxter, 1952: Thermodynamic limitation of ice accretion instruments. N.A.E., Canada, Lab. Rep. LR-32.

    Google Scholar 

  • Friedman, I., A. C. Redfield, B. Schoen and J. Harris, 1964: The variation of the deuterium content in natural waters in the hydrological cycle. Rev. Geophys., 2, 177–224.

    Article  Google Scholar 

  • Gitlin, S. N., H. S. Fogler and G. G. Goyer, 1966: A calorimetric method for measuring water content of hailstones. J. Appl. Meteor., 5, 715–721.

    Article  Google Scholar 

  • Gitlin, S. N., and G. G. Goyer, 1968: The liquid water content of hailstones. J. Atmos. Sci., 25, 97–99.

    Article  Google Scholar 

  • Held, G., 1973: Ten years of hail observations in the Pretoria- Witwatersrand area. J. Rech. Atmos., 7, 185–197.

    Google Scholar 

  • Kidder, R. E., and A. E. Carte, 1964: Structures of artificial hailstones. J. Rech. Atmos., 1, 169–181.

    Google Scholar 

  • Knight, C. A., 1968: On the mechanism of spongy hailstone growth. J. Atmos. Sci., 25, 440–444.

    Article  Google Scholar 

  • Knight, C. A., D. H. Ehhalt, N. Roper and N. C. Knight, 1976: Radial and tangential variation of deuterium in hailstones. J. Atmos. Sci., 32, 1990–2000.

    Article  Google Scholar 

  • Knight, C. A., and N. C. Knight, 1968a: Spongy hailstone growth criteria, I. Orientation fabrics, J. Atmos. Sci., 25, 445–452.

    Article  Google Scholar 

  • Knight, C. A., and N. C. Knight, 1968b: The final freezing of spongy ice: hailstone collection techniques and interpretation of structures. J. Appl. Meteor., 7, 875–881.

    Article  Google Scholar 

  • Knight, C. A., and N. C. Knight, 1970a: Hailstone embryos. J. Atmos. Sci., 27, 659–666.

    Article  Google Scholar 

  • Knight, C. A., and N. C. Knight, 1970b: Lobe structures of hailstones. J. Atmos. Sci., 27, 667–671.

    Article  Google Scholar 

  • Knight, C. A., and N. C. Knight, 1970c: The fall behavior of hailstones. J. Atmos. Sci., 27, 672–681.

    Article  Google Scholar 

  • Knight, C. A., and N. C. Knight, 1971a: Bull. Amer. Met. Soc., 52, Feb. issue cover photograph.

    Google Scholar 

  • Knight, C. A., and N. C. Knight, 1971b: Hailstones. Sci. Amer., 224, 96–104.

    Article  Google Scholar 

  • Knight, C. A., and N. C. Knight, 1973: Quenched spongy hail. J. Atmos. Sci., 30, 1665–1671.

    Article  Google Scholar 

  • Kry, P. R., and List, R. 1974: Angular motions of freely falling spheroidal hailstone models. Phys. Fluids, 17, 1093–1102.

    Article  Google Scholar 

  • Langmuir, I., and K. B. Blodgett, 1946: Mathematical investigations of water droplet trajectories. G.E. Rep. RL 224. Also published in 1961 in Collected Works, Pergamon Press, 335–393.

    Google Scholar 

  • Levi, L., E. M. Achaval and A. N. Aufdermaur, 1970: Crystal orientation in a wet growth hailstone. J. Atmos. Sci., 27, 512–513.

    Article  Google Scholar 

  • Levi, L., E. M. Achaval and L. Lubart, 1974: Structure of ice grown from droplet accretion and solidification process. J. Cryst. Growth, 22, 303–310.

    Article  Google Scholar 

  • Levi, L., E. M. Achaval and A. N. Aufdermaur, 1970: Crystallographic orientation and crystal size in cylindrical accretions of ice. J. Atmos. Sci., 22, 443–452.

    Article  Google Scholar 

  • List, R., 1965: The mechanism of hailstone formation. Proc. Int. Conf. Cloud Physics, Tokyo and Sapporo, 481–491.

    Google Scholar 

  • List, R., 1958: Kennzeichen atmosphaerischer Eispartikeln, I. Teil. Z. Atfgew. Math. Phys., 9a, 180–192.

    Google Scholar 

  • List, R., 1959a: Wachstum von Eis-Wassergemischen im Hagelversuchskanal. Helv. Phys. Act., 32, 293–296.

    Google Scholar 

  • List, R., 1959b: Zur Aerodynamik von Hagelkoernern. Z. Angew. Math. Phys., 10, 143–159.

    Article  Google Scholar 

  • List, R., 1960a: Zur Thermodynamik teilweise waessriger Hagel-koerner. Z. Angew. Math. Phys., 11, 273–206.

    Article  Google Scholar 

  • List, R., 1960b: Growth and structure of graupels and hailstones. Physics of Precipitation, Geophys. Monog., No. 5, Amer. Geophys. Union, 317–324.

    Google Scholar 

  • List, R., J.-G. Cantin and M. G. Ferland, 1970: Structural properties of two hailstone samples. J. Atmos. Sci., 27, 1080–1090.

    Article  Google Scholar 

  • List, R., and J. Dussault, 1967: Quasi-steady state icing and melting and heat and mass transfer of spherical and spheroidal hailstones. J. Atmos. Sci., 24, 522–529.

    Article  Google Scholar 

  • List, R., W. A. Murray and C. Dyck, 1972: Air bubbles in hailstones. J. Atmos. Sci., 29, 916–920.

    Article  Google Scholar 

  • List, R., U. W. Rentsch, and A. C. Byram, 1973: On the aerodynamics of spheroidal hailstone models. J. Atmos. Sci., 30, 653–661.

    Article  Google Scholar 

  • List, R., P. H. Schuepp and R. G. Methot, 1965: Heat exchange ratios of hailstones in a model cloud and their simulation in a laboratory. J. Atmos. Sci., 22, 710–718.

    Article  Google Scholar 

  • Ludlam, F. H., 1950: The composition of coagulation elements in cumulanimbus. Quart. J. Roy. Meteor. Soc., 76, 52–58.

    Article  Google Scholar 

  • Ludlam, F. H., 1958: The hail problem. Nubila, 1, 12–96.

    Google Scholar 

  • Ludlam, F. H., and W. C. Macklin, 1959: Some aspects of a severe storm in S. E. England. Nubila, 2, 38–50.

    Google Scholar 

  • Macklin, W. C., 1961: Accretion in mixed clouds. Quart. J. Roy. Meteor. Soc., 87, 413–424.

    Article  Google Scholar 

  • Macklin, W. C., 1962: The density and structure of ice formed by accretion. Quart. J. Roy. Meteor. Soc., 88, 30–50.

    Article  Google Scholar 

  • Macklin, W. C., 1963: Heat transfer from hailstones. Quart. J. Roy. Meteor. Soc., 89, 360–369.

    Article  Google Scholar 

  • Macklin, W. C., and I. H. Bailey, 1966: On the critical liquid water concentrations of large hailstones. Quart. J. Roy. Meteor. Soc., 92, 297–300.

    Article  Google Scholar 

  • Macklin, W. C., and I. H. Bailey, 1968: The collection efficiencies of hailstones, Quart. J. Roy. Meteor. Soc., 94, 393–396.

    Article  Google Scholar 

  • Macklin, W. C., J. N. Carras and P. J. Rye, 1976: The interpretation of the crystalline and air bubble structures of hailstones. Quart. J. Roy. Meteor. Soc., 102, 25–44.

    Article  Google Scholar 

  • Macklin, W. C., and F. H. Ludlam, 1961: The fallspeeds of hailstones. Quart. J. Roy. Meteor. Soc., 87, 72–81.

    Article  Google Scholar 

  • Macklin, W. C., M. Majoube and L. Merlivat, 1972: The isotopic analysis of hailstones. Quart. J. Roy. Meteor. Soc., 98, 226–7.

    Article  Google Scholar 

  • Macklin, W. C., L. Merlivat and C. M. Stevenson, 1970: The analysis of a hailstone. Quart. J. Roy. Meteor. Soc., 96, 472–486.

    Article  Google Scholar 

  • Macklin, W. C., and G. S. Payne, 1967: A theoretical study of the ice accretion process. Quart. J. Roy. Meteor. Soc., 93, 195–213.

    Article  Google Scholar 

  • Macklin, W. C., and G. S. Payne, 1969: The spreading of accreted droplets. Quart. J. Roy. Meteor. Soc., 95, 724–730.

    Article  Google Scholar 

  • Macklin, W. C., and B. F. Ryan, 1965: The structure of ice grown in bulk supercooled water. J. Atmos. Sci., 22, 452–459.

    Article  Google Scholar 

  • Macklin, W. C., and P. J. Rye, 1974: Crystallographic orientation distributions in accreted ice. J. Atmos. Sci., 31, 849–852.

    Article  Google Scholar 

  • Macklin, W. C., E. Strauch and F. H. Ludlam, 1960: The density of hailstones collected from a summer storm. Nubila, 3, 12–17.

    Google Scholar 

  • Majoube, M., 1971: Fractionnement en oxygene 18 et en deuterium entre l’eau et sa vapeur. J. Chim. Phys., 10, 1423–1435.

    Google Scholar 

  • Mazjoub, M., G. Nief and E. Roth, 1968: Variations and comparisons of deuterium and oxygen 18 concentrations in hailstones. Proc. Inter. Conf Cloud Physics, Toronto, 450–454.

    Google Scholar 

  • Merlivat, L. and G. Nief, 1967: Fractionnement isotopique lors changements d’etat solide-vapeur et liquid-vapeur a des temperatures inferieures a OC. Tellus, 19, 122–127.

    Article  Google Scholar 

  • Merlivat, L. and E. Roth, 1964: Formation de la grele et fractionnement isotopique du deuterium. Abhand. Dtsch. Akad. Wissenschaf., 7, 839–853.

    Google Scholar 

  • Mossop, S. C., and R. E. Kidder, 1961: Hailstorm at Johannesburg on 9th November, 1959, II. Structure of hailstones. Nubila, 4, 74–86.

    Google Scholar 

  • Mossop, S. C., and R. E. Kidder, 1962: Artificial hailstones. Bull. Obs. Puy de Dome, 2, 65–80.

    Google Scholar 

  • Prodi, F., 1970: Measurements of local density in artificial and natural hailstones. J. Appl. Meteor., 9, 903–910.

    Article  Google Scholar 

  • Prohaska, K., 1905: Zugrichtung, Starke und Geschwindigkeit der Hagelwetter, Dauer des Hagelfalles 1902 und im Mittel. Meteor. Z., 22, 519–523.

    Google Scholar 

  • Pruppacher, H. R., 1967: Growth modes of ice crystals in supercooled water and aqueous solutions. J. Glaciol., 6, 651–662.

    Google Scholar 

  • Roos, D. v. d. S., 1972: A giant hailstone from Kansas in free fall. J. Appl. Meteor., 11, 1008–1011.

    Article  Google Scholar 

  • Roos, D. v. d. S., and A. E. Carte, 1973: The falling behaviour of oblate and spiky hailstones. J. Rech. Atmos., 39–52.

    Google Scholar 

  • Rosinski, J., 1966: Solid water-insoluble particles in hailstones and their geophysical significance. J. Appl. Meteor., 5, 481–492.

    Article  Google Scholar 

  • Rosinski, J., 1967: Insoluble particles in hail and rain. J. Appl. Meteor., 6, 1066–1074.

    Article  Google Scholar 

  • Rosinski, J., K. A. Browning, G. Langer and C. G. Nagamoto, 1975: On the distribution of water-soluble aerosol particles in hailstones and its possible value as an indication of the hail growth history (manuscript in preparation).

    Google Scholar 

  • Rye, P. J., and W. C. Macklin, 1973: Interpretation of crystallographic orientations in accreted ice. J. Atmos. Sci., 30, 1421–1426.

    Article  Google Scholar 

  • Rye, P. J., and W. C. Macklin, 1975: Crystal size in accreted ice. Quart. J. Roy. Meteor. Soc., 101, 207–215.

    Article  Google Scholar 

  • Sarrica, O., 1965: Observational results on hail formation and structure. Ric. Sci., 35, 345–359.

    Google Scholar 

  • Schuepp, P. H., 1971: Experiments on the local convective mass transfer of smooth and rough hailstone models. J. Appl. Meteor., 10, 1018–1025.

    Article  Google Scholar 

  • Schuepp, P. H., and R. List, 1969a: Mass transfer of rough hailstone models in flows of various turbulence levels. J. Appl. Meteor., 8, 254–263.

    Article  Google Scholar 

  • Schuepp, P. H., and R. List, 1969b: Influence of molecular properties of the fluid on simulation of the total heat and mass transfer of solid precipitation particles. J. Appl. Meteor., 8, 743–746.

    Article  Google Scholar 

  • Schumann, T. E. W., 1938: The theory of hailstone formation. Quart. J. Roy. Meteor. Soc., 64, 3–21.

    Article  Google Scholar 

  • Stewart, M. K., 1975: Stable isotope fractionation due to evaporation and isotopic exchange of falling water drops. J. Geophys. Res., 80, 1133–1146.

    Article  Google Scholar 

  • Steyn, K., 1950: Public Works of South Africa, Vol. 10, No. 75.

    Google Scholar 

  • Sulakvelidze, G. K., 1967: Rainstorms and Hail, Gidromet., Leningrad. [Translated Israel Program for Scientific Translations, Jerusalem, 1969.]

    Google Scholar 

  • Vittori, O., and G. di Caporiacco, 1959: The density of hailstones. Nubila, 2, 51–57.

    Google Scholar 

  • Weickmann, H., 1953: Observational data on the formation of precipitation in cumulonimbus clouds. Thunderstorm Electricity, H. R. Byers, Ed., University of Chicago Press, 66–138.

    Google Scholar 

  • Weickmann, H., 1964: The language of hailstorms and hailstones. Nubila, 6, 7–51.

    Google Scholar 

  • Willis, J. T., K. A. Browning and D. Atlas, 1964: Radar observations of ice spheres in free fall. J. Atmos. Sci., 21, 103–108.

    Article  Google Scholar 

  • Young, R. G. and K. A. Browning, 1967: Wind tunnel tests of simulated spherical hailstones with variable roughness. J. Atmos. Sci., 24, 58–62.

    Article  Google Scholar 

  • Burtsev, I.I., I.I. Gaivornosky, A. I. Kartsivatze, 1973: Hail process investigations and hail suppression activities in the USSR. Proc. WMO/IAMAP Sci. Conf. Weather Modification, Tashkent, October, 189–196.

    Google Scholar 

  • Carras, J. N. and W. C. Macklin, 1973: The shedding of accreted water during hailstone growth, Quart. J. Roy. Meteor. Soc., 99, 639–648.

    Article  Google Scholar 

  • Clark, T. L., and R. List, 1971: Dynamics of a falling particle zone. J. Atmos. Sci., 28, 718–727.

    Article  Google Scholar 

  • Gillespie, J. R., and R. List, 1976: Evolution of raindrop size distribution in steady state rain shafts. Proc. Int. Cloud Physics Conf., Boulder, Amer. Meteor. Soc., 472–477.

    Google Scholar 

  • Girard, C., and R. List, 1975: Thermodynamics of falling precipitation zones, Pure Appl. Phys., 113, 1035–1053.

    Google Scholar 

  • Joe, P. I., R. List, P. R. Kry, M. R. de Quervain, P. Y. K. Lui, P. W. Stagg, J. D. McTaggart-Cowan, E. P. Lozowski, M. C. Steiner, J. Von Niederhausern, R. E. Stewart, E. Freire, and G. Lesins, 1976: Loss of accreted water from growing hailstones. Proc. Int. Cloud Physics Conf Boulder, Amer. Meteor. Soc., 262–269.

    Google Scholar 

  • Kachurin, L. G., N. D. Artemyeva, A. I. Kartsivadze, S. Stoyanov, and M. Tekle, 1973: Simulation of the natural process of hail formation and its transformation under the influence of artificial crystallization. Proc. WMO/IAMAP Sci. Conf. Weather Modification, Tashkent, October, 231–237.

    Google Scholar 

  • Kidder, R. E., and A. E. Carte, 1964: Structure of artificial hailstones, J. Rech. Atmos., 1, 169–181.

    Google Scholar 

  • Knight, C. A., and N. C. Knight, 1970a: Lobe structure of hailstones, J. Atmos. Sci., 27, 667–671.

    Article  Google Scholar 

  • Knight, C. A., and N. C. Knight, 1970b: The falling behavior of hailstones, J. Atmos. Sci., 27, 672–681.

    Article  Google Scholar 

  • Kry, P. R., and R. List, 1974: Angular motions of freely falling spheroidal hailstone models, Phys. Fluids, 17, 1093–1102.

    Article  Google Scholar 

  • Levi, L., and A. M. Aufdermaur, 1970: Crystallographic orientation and crystal size in cylindrical accretions of ice. J. Atmos. Sci., 22, 443–452.

    Article  Google Scholar 

  • List, R., 1959a: Der Hagelversuchskanal. Z. Angew. Math. Phys., 10, 381–415.

    Article  Google Scholar 

  • List, R., 1959b: Wachstum von Eis-Wassergemischen im Hagelversuchskanal. Helv. Phys. Acta, 32, 293–296.

    Google Scholar 

  • List, R., 1960: Zur Thermodynamik teilweise waessriger Hagelkoerner. Z. Angew. Math. Phys., 11, 273–306.

    Article  Google Scholar 

  • List, R., and T. A. Agnew, 1973: Air bubbles in artificial hailstones, J. Atmos. Sci., 30, 1158–1165.

    Article  Google Scholar 

  • List, R., and T. L. Clark, 1973: The effect of particle size distributions on the dynamics of falling precipitation zones, Atmosphere, 11, 179–188.

    Google Scholar 

  • List, R., P. I. Joe, G. Lesins, P. R. Kry, M. R. de Quervain, J. D. McTaggart-Cowan, P. W. Stagg, E. P. Lozowski, E. Freire, R. E. Stewart, C. G. List, M. C. Steiner, and J. Von Niederhausern, 1976: On the variation of the collection efficiencies of icing cylinders. Preprints Int. Cloud Physics Conf, Boulder, Amer. Meteor. Soc., 233–239.

    Google Scholar 

  • List, R., 1977a: Ice accretions on structures. J. Glaciol., 18, 375–388.

    Google Scholar 

  • List, R., 1977b: The formation of rain. Proc. Roy. Soc. Canada (in press).

    Google Scholar 

  • List, R., 1978: Properties and growth of hailstones. Thunderstorms, E. Kessler, Ed. (in press).

    Google Scholar 

  • Macklin, W. C., 1961: Accretion in mixed clouds. Quart. J. Roy. Meteor. Soc., 87, 413–424.

    Article  Google Scholar 

  • Macklin, W. C., 1962: The density and structure of ice formed by accretion. Quart. J. Roy. Meteor. Soc., 88, 30–50.

    Article  Google Scholar 

  • Macklin, W. C., J. N. Carras, and P. J. Rye, 1976: The interpretation of the crystalline and air bubble structures of hailstones. Quart. J. Roy. Meteor. Soc., 102, 25–44.

    Article  Google Scholar 

  • Macklin, W. C, 1978: The characteristics of natural hailstones and their interpretation. Meteor. Mongr. No. 38, 65–88.

    Google Scholar 

  • Melcher, D., 1951: Experimentelle Untersuchung von Vereisungserscheinungen, Z. Angew Math. Phys., 2, 421–443.

    Article  Google Scholar 

  • Mossop. S. C., and R. E. Kidder, 1962: Artificial hailstones. Bull. Observ. Puy de Dome, 2, 65–80.

    Google Scholar 

  • de Quervain, M., 1954: Zur Frage der atmospharischen Vereisung. Bull. Schweiz. Elektro. Ver., 8, No. 14, 2–7.

    Google Scholar 

  • Stagg, P. W., 1975: Heat transfer at the surface of rotating spherical hailstone models. M.Sc. thesis, Dept. of Physics, University of Toronto, 307 pp.

    Google Scholar 

  • Stewart, R. E., R. List, and U. W. Rentsch, 1976: Aerodynamics of freely falling bodies. Proc. Int. Cloud Physics Conf, Boulder, Amer. Meteor. Soc., 258–262.

    Google Scholar 

  • Sulakvelidze, G. K., N. Sh. Bibliashvili, and V. F. Lapcheva, 1967: Formation of Precipitation and Modification of Hail Processes. [Israel Program for Scientific Translations, Jerusalem, 208 pp.]

    Google Scholar 

  • Wisner, C., H. D. Orville and C. Myers, 1972: A numerical model of a hail-bearing cloud. J. Atmos. Sci., 29, 1160–1181.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

G. Brant Foote Charles A. Knight

Rights and permissions

Reprints and permissions

Copyright information

© 1977 American Meteorological Society

About this chapter

Cite this chapter

Macklin, W.C. (1977). The Characteristics of Natural Hailstones and Their Interpretation. In: Foote, G.B., Knight, C.A. (eds) Hail: A Review of Hail Science and Hail Suppression. Meteorological Monographs, vol 16. American Meteorological Society, Boston, MA. https://doi.org/10.1007/978-1-935704-30-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-935704-30-0_3

  • Publisher Name: American Meteorological Society, Boston, MA

  • Online ISBN: 978-1-935704-30-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics