Skip to main content

Modification of Mesoscale Convective Weather Systems

  • Chapter
Precipitation Enhancement—A Scientific Challenge

Part of the book series: Meteorological Monographs ((METEOR))

Abstract

Modification of mesoscale convective weather systems through ice-phase seeding is briefly reviewed. A simple mathematical framework for estimating the likely mesoscale response to convective cloud modification is presented, and previous mesoscale modification hypotheses are discussed in the context of this mathematical framework. Some basic differences between cloud-scale and mesoscale modification hypotheses are also discussed. Numerical model experiments to test the mesoscale sensitivity of convective weather systems are reviewed, and several focal points for identifying mesoscale modification potential are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anthes, R. A., 1971: The response of a 3-level axisymmetric hurricane model to artificial redistribution of convective heat release. NOAA Tech. Memo. ERL NHRL-92, 14 pp. [NTIS COM-71–00711.]

    Google Scholar 

  • Anthes, R. A., 1977: A cumulus parameterization scheme utilizing a one-dimensional cloud model. Mon. Wea. Rev., 105, 270–286.

    Article  Google Scholar 

  • Anthes, R. A., and D. Keyser, 1979: Tests of a fine-mesh model over Europe and the United States. Mon. Wea. Rev., 107, 963–984.

    Article  Google Scholar 

  • Anthes, R. A., J. W. Trout and S. L. Rosenthal, 1971: Comparisons of tropical cyclone simulations with and without the assumption of circular symmetry. Mon. Wea. Rev., 99, 759–766.

    Article  Google Scholar 

  • Barnes, G. M., E. J. Zipser, D. Jorgensen and F. Marks, Jr., 1983: Mesoscale and convective structure of a hurricane rainband. J. Atmos. Sci., 40, 2125–2137.

    Article  Google Scholar 

  • Barnston, A. G., W. L. Woodley, J. A. Flueck and M. H. Brown, 1983: The Florida Area Cumulus Experiment’s second phase (FACE-2). Part I: The experimental design, implementation and basic data. J. Appl. Meteor., 22, 1504–1528.

    Article  Google Scholar 

  • Braham, R. R., and E. A. Neil, 1958: Modification of hurricanes through cloud seeding. U.S. Dept. of Commerce, Nat. Hurr. Res. Proj. Rep. No. 16, 12 pp.

    Google Scholar 

  • Brown, J. M., 1979: Mesoscale unsaturated downdrafts driven by rainfall evaporation: A numerical study. J. Atmos. Sci., 36, 313–338.

    Article  Google Scholar 

  • Browning, K. A., 1964: Airflow and precipitation trajectories with severe storms which travel to the right of the winds. J. Atmos. Sci., 21, 634–639.

    Article  Google Scholar 

  • Browning, K. A., and G. B. Foote, 1976: Airflow and hail growth in supercell storms and some implications for hail suppression. Quart. J. Roy. Meteor. Soc., 102, 499–533.

    Article  Google Scholar 

  • Caracena, F., and J. M. Fritsch, 1983: Focusing mechanisms in the Texas Hill Country flash floods of 1978. Mon. Wea. Rev., 111, 2319–2332.

    Article  Google Scholar 

  • Chen, C. H., and H. D. Orville, 1980: Effects of mesoscale convergence on cloud convection. J. Appl. Meteor., 19, 256–274.

    Article  Google Scholar 

  • Cotton, W. R., and A. Boulanger, 1975: On the variability of “dynamic seedability” as a function of time and location over south Florida: Part I. Spatial variability. J. Appl. Meteor., 14, 710–717.

    Article  Google Scholar 

  • Cotton, W. R, and G. J. Tripoli, 1978: Cumulus convection in shear-flow three-dimensional numerical experiments. J. Atmos. Sci., 35, 1503–1521.

    Article  Google Scholar 

  • Cotton, W. R, R. A. Pielke and P. T. Gannon, 1976: Numerical experiments on the influence of the mesoscale circulation on the cumulus scale. J. Atmos. Sci., 33, 252–261.

    Article  Google Scholar 

  • Cunning, J. B., R. L. Holle, P. T. Gannon and A. I. Watson, 1982: Convective evolution and merger in the FACE experimental area: Mesoscale convection and boundary layer interactions. J. Appl. Meteor., 21, 953–977.

    Google Scholar 

  • Emanuel, K. A., 1979: Inertial instability and mesoscale convective systems, Part I: Linear theory of inertial instability in rotating viscous fluids. J. Atmos. Sci., 36, 2425–2449.

    Article  Google Scholar 

  • Estoque, M. A., and J. J. Fernandez-Partagas, 1974: Precipitation dependence on synoptic-scale conditions and cloud seeding. Geofis. Int., 14, 181–206.

    Google Scholar 

  • Fawbush, E. J., and R. C. Miller, 1954: The types of airmasses in which North American tornadoes form. Bull. Amer. Meteor. Soc., 35, 154165.

    Google Scholar 

  • Flueck, J. A., 1971: Statistical analyses of the ground level precipitation data. Project Whitetop, Part V. Dept. of Geophysical Sciences, University of Chicago.

    Google Scholar 

  • Foote, G. B., and J. C. Fankhauser, 1973: Airflow and moisture budget beneath a northeast Colorado hailstorm. J. Appl. Meteor., 12, 1330 1353.

    Google Scholar 

  • Foote, G. B., and C. G. Wade, 1982: Case study of a hailstorm in Colorado. Part I: Radar echo structure and evolution. J. Atmos. Sci., 39, 2828 2846.

    Google Scholar 

  • Frank, W. M., 1977a: The structure and energetics of the tropical cyclone, Paper I: Storm structure. Mon. Wea. Rev., 105, 1119–1135.

    Article  Google Scholar 

  • Frank, W. M, 1977b: The structure and energetics of the tropical cyclone, Paper II: Dynamics and energetics. Mon. Wea. Rev., 105, 1136–1150.

    Article  Google Scholar 

  • Frank, W. M, 1978: The life cycles of GATE convective systems. J. Atmos. Sci., 35, 1256–1264.

    Article  Google Scholar 

  • Frank, W. M, 1983: The cumulus parameterization problem. Mon. Wea. Rev., 111, 1859–1871.

    Article  Google Scholar 

  • Fritsch, J. M., and C. F. Chappell, 1980a: Numerical prediction of convectively driven mesoscale pressure systems. Part I: Convective parameterization. J. Atmos. Sci., 37, 1722–1733.

    Article  Google Scholar 

  • Fritsch, J. M, and C. F. Chappell, 1980b: Numerical prediction of convectively driven mesoscale pressure systems. Part II: Mesoscale model. J. Atmos. Sci., 37, 1734–1762.

    Article  Google Scholar 

  • Fritsch, J. M, and C. F. Chappell, 1981: Preliminary numerical tests of the modification of mesoscale convective systems. J. Appl. Meteor., 20, 910–921.

    Article  Google Scholar 

  • Gamache, J. F., and R. A. Houze, Jr., 1983: Water budget of a mesoscale convective system in the tropics. J. Atmos. Sci., 40, 1835–1850.

    Article  Google Scholar 

  • Gentry, R. C., 1969: Project STORMFURY. Bull. Amer. Meteor. Soc., 50, 404–409.

    Google Scholar 

  • Gentry, R. C., 1970: Hurricane Debbie modification experiments, August 1969. Science, 168, 473–475.

    Article  Google Scholar 

  • Hawkins, H. F., 1981: Comparison of results of the hurricane Debbie (1969) modification experiments with those from Rosenthal’s numerical model simulation experiments. Mon. Wea. Rev., 99, 427434.

    Google Scholar 

  • Houze, R. A., Jr., 1977: Structure and dynamics of a tropical squall-line system. Mon. Wea. Rev., 105, 1540–1567.

    Article  Google Scholar 

  • Houze, R. A., and P. V. Hobbs, 1982: Organization and structure of precipitating cloud systems. Advances in Geophysics, Vol. 24, Academic Press, 225–315.

    Google Scholar 

  • Klemp, J. B., and R. B. Wilhelmson, 1978: Simulations of right- and left-moving storms produced through storm splitting. J Atmos. Sci., 35, 1097–1110.

    Article  Google Scholar 

  • Koss, W. J., 1976: Linear stability of CISK-induced disturbances: Fourier component eigenvalue analysis. J. Atmos. Sci., 33, 1195–1222.

    Article  Google Scholar 

  • Kreitzberg, C. W., and D. J. Perkey, 1977: Release of potential instability: Part II. The mechanism of convective-mesoscale interaction. J. Atmos. Sei., 34, 1569–1595.

    Article  Google Scholar 

  • Leary, C. A., and R. A. Houze, Jr., 1979: Melting and evaporation of hydrometeors in precipitation from the anvil clouds of deep tropical convection. J Atmos. Sci., 36, 669–679.

    Article  Google Scholar 

  • Levy, G., and W. R. Cotton, 1984: A numerical investigation of mechanisms linking glaciation of the ice-phase to the boundary layer. J. Climate Appl. Meteor., 23, 1505–1519.

    Article  Google Scholar 

  • Lopez, R. E., 1973a: A parametric model of cumulus convection. J. Atmos. Sci., 30, 1354–1373.

    Article  Google Scholar 

  • Lopez, R. E.L1973b: Cumulus convection and larger scale circulations. II: Cu-mulus and mesoscale interactions. Mon. Wea. Rev., 101, 856–870.

    Google Scholar 

  • McBride, J. L., 1981: Observational analysis of tropical cyclone formation. Part III: Budget analysis. J. Atmos. Sci., 38, 1152–1166.

    Article  Google Scholar 

  • Maddox, R. A., 1980: Mesoscale convective complexes. Bull. Amer. Meteor. Soc., 61, 1374–1387.

    Article  Google Scholar 

  • Maddox, R. A, C. F. Chappell and L. R. Hoxit, 1979: Synoptic and mesoscale aspects of flash flood events. Bull. Amer. Meteor. Soc., 60, 115123.

    Google Scholar 

  • Maddox, R. A, D. J. Perkey and J. M. Fritsch, 1981: Evolution of upper tropospheric features during the development of a mesoscale convective complex. J. Atmos. Sci., 38, 1664–1674.

    Article  Google Scholar 

  • Marwitz, J. D., 1972a: The structure and motion of severe hailstorms. Part I: Supercell storms. J. Appl. Meteor., 11, 166–179.

    Article  Google Scholar 

  • Marwitz, J. D., 1972b: The structure and motion of severe hailstorms. Part II: Multi-cell storms. J. Appl. Meteor., 11, 180–188.

    Article  Google Scholar 

  • Marwitz, J. D., 1972c: The structure and motion of severe hailstorms. Part III: Severely sheared storms. J. Appl. Meteor., 11, 189–201.

    Article  Google Scholar 

  • Marwitz, J. D., 1972d: Precipitation efficiency of thunderstorms on the High Plains. J Rech. Atmos., 6, 367–370.

    Google Scholar 

  • Matthews, D. A., 1981: Natural variability of thermodynamic features affecting convective cloud growth and dynamic seeding: A comparative summary of three High Plains sites from 1975 to 1977. J. Appl. Meteor., 20, 971–996.

    Article  Google Scholar 

  • Matthews, D. A., and B. A. Silverman, 1980: Sensitivity of convective cloud growth to mesoscale lifting: A numerical analysis of mesoscale convective triggering. Mon. Wea. Rev., 108, 1056–1063.

    Article  Google Scholar 

  • Moncrieff, M. W., and J. S. A. Green, 1972: The propagation and transfer properties of steady convective overturning in shear. Quart. J. Roy. Meteor. Soc., 98, 336–352.

    Article  Google Scholar 

  • Nickerson, E. C., 1979: FACE rainfall results: Seeding effect or natural variability? J. Appl. Meteor., 18, 1097–1105.

    Article  Google Scholar 

  • Nickerson, E. C., 1981: The FACE-1 seeding effect revisited. J. Appl. Meteor., 20, 108–114.

    Article  Google Scholar 

  • Ogura, Y., 1975: On the interaction between cumulus clouds and the large scale environment. Pure Appl. Geophys. 113, 869–890.

    Article  Google Scholar 

  • Orville, H. D., and J. M. Chen, 1982: Effects of cloud seeding, latent heat of fusion, and condensate loading on cloud dynamics and precipitation evolution: A numerical study. J. Atmos. Sci., 39,2807–2827.

    Google Scholar 

  • Parsons, D. B., and P. V. Hobbs, 1983: The mesoscale and microscale structure and organization of clouds and precipitation in mid-latitude cyclones. XI: Comparison between observational and theoretical aspects of rainbands. J. Atmos. Sci., 40, 2377–2397.

    Article  Google Scholar 

  • Rosenthal, S. L., 1971: A circularly symmetric primitive equation model of tropical cyclones and its response to artificial enhancement of the convective heating functions. Mon. Wea. Rev., 99, 414–426.

    Article  Google Scholar 

  • Sardie, J. M., 1984: On development mechanisms for polar lows. Ph.D. dissertation, The Pennsylvania State University, 220 pp.

    Google Scholar 

  • Simpson, J., 1980: Downdrafts as linkages in dynamic cumulus seeding effects. J. Appl. Meteor., 19, 477–487.

    Article  Google Scholar 

  • Simpson, J., and V. Wiggert, 1971: 1968 Florida cumulus seeding experiment: Numerical model results. Mon. Wea. Rev., 99, 87–118.

    Article  Google Scholar 

  • Simpson, J., N. E. Westcott, R. J. Clerman and R. A. Pielke, 1980: On cumulus mergers. Arch. Meteor. Geophys. Bioklim., A29, 1–40.

    Article  Google Scholar 

  • Simpson, R. H., and J. S. Malkus, 1964: Experiments in hurricane modification. Sci. Amer., 211, 27–37.

    Article  Google Scholar 

  • Smith, P. L., A. S. Dennis, B. A. Silverman, A. B. Super, E. W. Holroyd III, W. A. Cooper, P. W. Mielke, Jr., K. J. Berry, H. D. Orville and J. R. Miller, Jr., 1984: HIPLEX-1: Experimental design and response variables. J. Appl. Meteor., 23, 497–512.

    Article  Google Scholar 

  • Tripoli, G. J., and W. R. Cotton, 1980: A numerical investigation of several factors contributing to the observed variable intensity of deep convection over south Florida. J. Appl. Meteor., 19, 1037 1063.

    Google Scholar 

  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504–520.

    Article  Google Scholar 

  • Woodley, W. L., J. Simpson, R. Biondini and J. Jordan, 1977: Rainfall results, 1970–1975: Florida Area Cumulus Experiment. Science, 195, 735–742.

    Article  Google Scholar 

  • Woodley, W. L., J. Jordan, A. Barnston, J. Simpson, R. Biondini and J. Flueck, 1982: Rainfall results of the Florida Area Cumulus Experiment, 1970–76. J. Appl. Meteor., 21, 139–164.

    Article  Google Scholar 

  • Woodley, W. L., A. Bamston, J. Flueck and R. Biondini, 1983: The Florida Area Cumulus Experiment’s second phase (FACE-2). Part II: Replicated and confirmatory analyses. J. Appl. Meteor., 22, 1529–1540.

    Article  Google Scholar 

  • Xu, Q., and J. H. E. Clark, 1984: Wave CISK and mesoscale convective systems. J. Atmos. Sci., 41, 2089–2107.

    Article  Google Scholar 

  • Zhang, D.-L., 1985: Nested-grid simulation of the meso-ß scale structure and evolution of the Johnstown flood of July 1977. Ph.D. dissertation, The Pennsylvania State University, 251 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1986 American Meteorological Society

About this chapter

Cite this chapter

Fritsch, J.M. (1986). Modification of Mesoscale Convective Weather Systems. In: Precipitation Enhancement—A Scientific Challenge. Meteorological Monographs. American Meteorological Society, Boston, MA. https://doi.org/10.1007/978-1-935704-17-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-935704-17-1_8

  • Publisher Name: American Meteorological Society, Boston, MA

  • Online ISBN: 978-1-935704-17-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics