Skip to main content

Topics in Applied Dispersion Modeling

  • Chapter

Abstract

The preceding chapters have laid the foundation for the material presented in this chapter. Here, I shall show how the ideas described earlier can be used to develop practical air pollution models. I shall focus on three topics that are considered important in applied dispersion modeling. The first is dispersion in coastal areas. The recent interest in this subject has been stimulated by offshore drilling for oil. Most of the models developed to estimate the impact of these offshore activities use dispersion parameterizations that are strictly applicable to sources over land. In this chapter I shall emphasize the need to relate the dispersion to the physics of the over-water boundary layer, which differs from that over land. A realistic dispersion model must also treat the sharp change in boundary layer structure as air flows from water to land. I discuss methods to incorporate this transition into models and also discuss estimating the height of the coastal boundary layer, one of the critical inputs to a shoreline dispersion model.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Carson, D. J., and F. B. Smith, 1974: Thermodynamic model for the development of a convectively unstable boundary layer. Advances in Geophysics, 18A, Academic Press, New York, 111–124.

    Google Scholar 

  • Deardorff, J. W., and G. W. Willis, 1982: Ground-level concentrations due to fumigation into an entraining mixed layer. Atmos. Environ., 16, 1159–1170.

    Article  Google Scholar 

  • Durbin, P. A., 1980: A stochastic model of two-particle dispersion and concentration fluctuations in homogeneous turbulence. J. Fluid Mech., 100, 279–302.

    Article  Google Scholar 

  • Fox, D. G., 1981: Judging air quality model performance. Bull. Amer. Meteor. Soc., 62, 599–609.

    Article  Google Scholar 

  • Fox, D. G., 1984: Uncertainty in air quality modeling. Bull. Amer. Meteor. Soc., 65, 27–36.

    Article  Google Scholar 

  • Hunt, J. C. R., 1982: Diffusion in the stable boundary layer. Atmospheric Turbulence and Air Pollution Modelling, F. T. M. Nieuwstadt and H. van Dop, Eds., Reidel, Dordrecht, 231–274.

    Google Scholar 

  • Hunt, J. C. R., R. E. Britter, and J. S. Puttock, 1979: Mathematical models of dispersion of air pollution around building and hills. Mathematical Modelling of Turbulent Diffusion in the Environment, Academic Press, New York, 145–200.

    Google Scholar 

  • Kaimal, J. C., J. C. Wyngaard, D. A. Haugen, O. R. Coté, Y. Izumi, S. J. Caughey, and C. J. Readings, 1976: Turbulence structure in the convective boundary layer. J. Atmos. Sci., 33, 2152–2169.

    Article  Google Scholar 

  • Kerman, B. R., R. E. Mickle, R. V. Portelli, N. B. Trivett, and P. K. Misra, 1982: The Nanticoke shoreline diffusion experiment, June 1978-II. Internal boundary layer structure. Atmos. Environ., 16, 423–437.

    Article  Google Scholar 

  • Kitaigorodskii, S. A., 1973: The Physics of Air-Sea Interaction. Israel Program for Scientific Translations, Jerusalem, 236 pp.

    Google Scholar 

  • Lamb, R. G., 1978: A numerical simulation of dispersion from an elevated point source in the convective planetary boundary layer. Atmos. Environ., 12, 1297–1304.

    Article  Google Scholar 

  • Lamb, R. G., 1982: Diffusion in the convective boundary layer. Atmospheric Turbulence and Air Pollution Modelling, F. T. M. Nieuwstadt and H. van Dop, Eds., Reidel, Dordrecht, 159–229.

    Google Scholar 

  • Lenschow, D. H., J. C. Wyngaard, and W. T. Pennell, 1980: Mean-field and second-moment budgets in a baroclinic convective boundary layer. J. Atmos. Sci., 37, 1313–1326.

    Article  Google Scholar 

  • Lewellen, W. R., R. I. Sykes, and S. F. Parker, 1985: An evaluation technique which uses the prediction of both concentration mean and variance. Proceedings of the DOE/AMS Air Pollution Evaluation Workshop, October 1984, Savannah River Lab, Report No. DP-1701–1, Sec. 2, 1–24.

    Google Scholar 

  • Louis, J. F., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17, 187–207.

    Article  Google Scholar 

  • Lumley, J. L., and H. A. Panofsky, 1964: The Structure of Atmospheric Turbulence. Wiley Interscience, New York, 239 pp.

    Google Scholar 

  • Lyons, W. A., and H. S. Cole, 1973: Fumigation and trapping on the shores of Lake Michigan during stable onshore flow. J. Appl. Meteor., 12, 494–510.

    Article  Google Scholar 

  • Misra, P. K.,1980: Dispersion from tall stacks into a shoreline environment. Atmos. Environ., 14, 393–397.

    Google Scholar 

  • Misra, P. K., and S. Onlock, 1982: Modeling continuous fumigation of Nanticoke generating station plume. Atmos. Environ., 15, 479–489.

    Article  Google Scholar 

  • Nieuwstadt, F. T. M., and H. van Dop, Eds., 1982: Atmospheric Turbulence and Air Pollution Modelling. Reidel, Dordrecht, 358 pp.

    Google Scholar 

  • Panofsky, H. A., 1978: Matching in the convective boundary layer. J. Atmos. Sci., 35, 272–276.

    Article  Google Scholar 

  • Panofsky, H. A., and J. Dutton, 1984: Atmospheric Turbulence: Models and Methods for Engineering Applications. Wiley, New York, 397 pp.

    Google Scholar 

  • Plate, E. J., 1971: Aerodynamic Characteristics of Atmospheric Boundary Layers. U. S. Atomic Energy Commission, TID-25465, 190 pp.

    Google Scholar 

  • Raynor, G. S., P. Michael, R. M. Brown, and S. Sethuraman, 1975: Studies of atmospheric diffusion from a nearshore oceanic site. J. Appl. Meteor., 14, 1080–1094.

    Article  Google Scholar 

  • Sawford, B. L., 1985: Lagrangian statistical similarity of concentration mean and fluctuation fields. J. Climate Appl. Meteor., 24, 1152–1166.

    Article  Google Scholar 

  • Schiermeier, F. A., 1984: Scientific assessment document on status of complex terrain models for EPA regulatory applications. EPA Report No. EPA-600/384–103.

    Google Scholar 

  • Smith, S. D., 1980: Wind stress and heat flux over the ocean in gale-force winds. J. Phys. Ocean., 10, 709–726.

    Article  Google Scholar 

  • Snyder, W. H., R. S. Thompson, R. E. Eskridge, R. E. Lawson, Jr., I. P. Castro, J. T. Lee, J. C. R. Hunt, and Y. Ogawa, 1983: The Structure of Strongly Stratified Flow over Hills—Dividing Streamline Concept. Appendix A to EPA-600/383–015, U. S. Environmental Protection Agency, Research Triangle Park, NC, 320–375.

    Google Scholar 

  • Strimaitis, D. G., T. F. Lavery, A. Venkatram, D. C. DiCristofaro, B. R. Greene, and B. A. Egan, 1985: EPA Complex Terrain Model Development. Fourth Milestone Report-1984. EPA Report No. EPA-600/3–84/110.

    Google Scholar 

  • Tennekes, H., 1973: A model for the dynamics of the inversion above a convective boundary layer. J. Atmos. Sci., 30, 558–567.

    Article  Google Scholar 

  • Thompson, R. S., and W. H. Snyder, 1984: Dispersion from a source upwind of a three-dimensional hill of moderate slope. EPA report included in Strimaitis et al. (1985).

    Google Scholar 

  • van Dop, H., R. Steenkist, and F. T. M. Nieuwstadt, 1979: Revised estimates for continuous shoreline fumigation. J. Appl. Met., 18, 133–137.

    Article  Google Scholar 

  • Venkatram, A., 1977a: A model of internal boundary-layer development. Bound.-Layer Meteor., 11, 419–437.

    Article  Google Scholar 

  • Venkatram, A., 1977b: Internal boundary layer development and fumigation. Atmos. Environ., 11, 479–482.

    Article  Google Scholar 

  • Venkatram, A., 1979: The expected deviation of observed concentrations from predicted ensemble means. Atmos. Environ., 13, 1547–1550.

    Article  Google Scholar 

  • Venkatram, A., 1980: Estimating the Monin-Obukhov length in the stable boundary layer for dispersion calculations. Bound.-Layer Meteor., 19, 481–485.

    Article  Google Scholar 

  • Venkatram, A., 1983: On dispersion in the convective boundary layer. Atmos. En-viron., 17, 529–533.

    Article  Google Scholar 

  • Venkatram, A., 1984: The uncertainty in estimating dispersion in the convective boundary layer. Atmos. Environ., 18, 307–310.

    Article  Google Scholar 

  • Venkatram, A., D. Strimaitis, and D. DiCristofaro, 1984: A semi-empirical model to estimate vertical dispersion of elevated releases in the stable boundary layer. Atmos. Environ., 18, 823–928.

    Google Scholar 

  • Weil, J. C., and R. P. Brower, 1984: An updated Gaussian plume model for tall stacks. J. Air Pollut. Control. Assoc., 34, 818–827.

    Article  Google Scholar 

  • Weil, J. C., L. A. Corio, and R. P. Brower, 1986: Dispersion of buoyant plumes in the convective boundary layer. 5th Joint Conference on Applications of Air Pollution Meteorology, Amer. Meteor. Soc., Boston, 335–338.

    Google Scholar 

  • Weisman, B., 1976: On the criteria for the occurrence of fumigation inland from a large lake—a reply. Atmos. Environ., 12, 172–173.

    Article  Google Scholar 

  • Willis, G. E., and J. W. Deardorff, 1978: A laboratory study of dispersion from an elevated source within a modeled convective planetary boundary layer. Atmos. Environ., 12, 1305–1311.

    Article  Google Scholar 

  • Wyngaard, J. C., Ed., 1984: Large-Eddy Simulation: Guidelines for its Application to Planetary Boundary Layer Research. Available from DTIC, AD-A146381, 122 pp.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 American Meteorological Society

About this chapter

Cite this chapter

Venkatram, A. (1988). Topics in Applied Dispersion Modeling. In: Venkatram, A., Wyngaard, J.C. (eds) Lectures on Air Pollution Modeling. American Meteorological Society, Boston, MA. https://doi.org/10.1007/978-1-935704-16-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-935704-16-4_7

  • Publisher Name: American Meteorological Society, Boston, MA

  • Online ISBN: 978-1-935704-16-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics