Skip to main content

Abstract

Even the most casual observer notices the changes in the wind. Though it has a certain persistence in time, the details of its swirls and eddies seem infinitely variable. Its strength changes day to day as weather systems evolve, and day to night as the sun rises and sets. It is modulated strongly by terrain features and by urban architecture. How can we hope to describe such a complicated phenomenon?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Banta, R. M., 1985: Late-morning jump in TKE in the mixed layer over a mountain basin. J. Atmos. Sci., 42, 407–411.

    Article  Google Scholar 

  • Blackadar, A. K., and K. Buajitti, 1957: Theoretical studies of diurnal wind variations. Quart. J. Roy. Meteor. Soc., 83, 486–500.

    Article  Google Scholar 

  • Brost, R. A., and J. C. Wyngaard, 1978: A model study of the stably stratified planetary boundary layer. J. Atmos. Sci., 35, 1427–1440.

    Article  Google Scholar 

  • Busch, N. E., 1973: On the mechanics of atmospheric turbulence. Workshop on Micrometeorology, D. A. Haugen, Ed., Amer. Meteor. Soc., Boston, 1–65.

    Google Scholar 

  • Businger, J. A., 1985: The marine boundary layer, from air-sea interface to in-version. NCAR Technical Note, NCAR/TN-252 + STR, National Center for Atmospheric Research, Boulder, CO, 84 pp.

    Google Scholar 

  • Businger, J. A., M. Miyake, A. J. Dyer, and E. F. Bradley, 1967: On the direct determination of the turbulent heat flux near the ground. J. Appl. Meteor., 6, 1025–1032.

    Article  Google Scholar 

  • Businger, J. A., J. C. Wyngaard, Y. Izumi, and E. F. Bradley, 1971: Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci., 28, 181–189.

    Article  Google Scholar 

  • Calder, K. L., 1966: Concerning the similarity theory of A. S. Monin and A. M. Obukhov for the turbulent structure of the thermally stratified surface layer of the atmosphere. Quart. J. Roy. Meteor. Soc., 92, 141–146.

    Article  Google Scholar 

  • Calder, K. L., 1968: Concerning the similarity theory of A. S. Monin and A. M. Obukhov for the turbulent structure of the thermally stratified surface layer of the atmosphere (Discussion). Quart. J. Roy. Meteor. Soc., 94, 108–113.

    Article  Google Scholar 

  • Caughey, S. J., 1982: Observed characteristics of the atmospheric boundary layer. Atmospheric Turbulence and Air Pollution Modelling, F. T. M. Nieuwstadt and H. van Dop, Eds., Reidel, Dordrecht, 107–158.

    Google Scholar 

  • Caughey, S. J., J. C. Wyngaard, and J. C. Kaimal, 1979: Turbulence in the evolving stable boundary layer. J. Atmos. Sci., 36, 1041–1052.

    Article  Google Scholar 

  • Ching, J. K. S., 1985: Urban-scale variations of turbulence parameters and fluxes. Bound.-Layer Meteor., 33, 335–362.

    Article  Google Scholar 

  • Cramer, H. E., 1959: Engineering estimates of atmospheric dispersal capacity. Am. Ind Hyg. J., 20, 183–188.

    Article  Google Scholar 

  • Csanady, G. T., 1973: Turbulent Diffusion in the Environment. Reidel, 248 pp.

    Google Scholar 

  • Deardorff, J. W., 1970: Convective velocity and temperature scales for the unstable planetary boundary layer and for Raleigh convection. J. Atmos. ScL, 27, 1211–1213.

    Article  Google Scholar 

  • Deardorff, J. W., 1973a: Three-dimensional numerical modeling of the planetary boundary layer. Workshop on Micrometeorology, D.A. Haugen, Ed., Amer. Meteor. Soc., Boston, 271–311.

    Google Scholar 

  • Deardorff, J. W., 1973b: An explanation of anomalously large Reynolds stresses within the convective planetary boundary layer. J. Atmos. Sci., 30, 1070–1076.

    Article  Google Scholar 

  • Deardorff, J. W., 1974: Three-dimensional numerical study of turbulence in an entraining mixed layer. Bound.-Layer Meteor., 7, 199–226.

    Google Scholar 

  • Deardorff, J. W., 1979: Prediction of convective mixed-layer entrainment for realistic capping inversion structure. J. Atmos. Sci., 36, 424–436.

    Article  Google Scholar 

  • Deardorff, J. W., 1980: Cloud top entrainment instability. J. Atmos. Sci., 37, 13 1147.

    Google Scholar 

  • Deardorff, J. W., and G. E. Willis, 1985: Further results from a laboratory model of the convective planetary boundary layer. Bound.-Layer Meteor., 32, 205–236.

    Article  Google Scholar 

  • de Baas, A. F., and A. G. M. Driedonks, 1985: Internal gravity waves in a stably stratified boundary layer. Bound.-Layer Meteor., 31, 303–323.

    Article  Google Scholar 

  • Delage, Y., 1974: A numerical study of the nocturnal atmospheric boundary layer. Quart. J. Roy. Meteor. Soc.,100, 351–364.

    Google Scholar 

  • Fox, D. G., 1984: Uncertainty in air-quality modeling. Bull. Amer. Meteor. Soc., 65, 27–36.

    Article  Google Scholar 

  • Garratt, J. R., 1985: The inland boundary layer at low latitudes. I. The nocturnal jet. Bound.-Layer Meteor., 32, 307–328.

    Article  Google Scholar 

  • Garratt, J. R., and R. A. Brost, 1981: Radiative cooling effects within and above the nocturnal boundary layer. J. Atmos. Sci., 38, 2730–2746.

    Article  Google Scholar 

  • Garratt, J. R., J. C. Wyngaard, and R. J. Francey, 1982: Winds in the atmospheric boundary layer—prediction and observation. J. Atmos. Sci., 39, 1307–1316.

    Google Scholar 

  • Hanna, S. R., 1982: Natural variability of observed hourly SO2 and CO concentra-tions in St. Louis. Atmos. Environ., 16, 1435–1440.

    Article  Google Scholar 

  • Haugen, D., Ed., 1973: Workshop on Micrometeorology. Amer. Meteor. Soc., Boston, 392 pp.

    Google Scholar 

  • Haugen, D. A., J. C. Kaimal, and E. F. Bradley, 1971: An experimental study of Reynolds stress and heat flux in the atmospheric surface layer. Quart. J. Roy. Meteor. Soc., 97, 168–180.

    Article  Google Scholar 

  • Hechtel, L. M, and R. Stull, 1985: Statistical measures of surface inhomogeneity, and its potential impact on boundary-layer turbulence. 7th Symposium on Turbulence and Diffusion, Amer. Meteor. Soc., Boston, 144–146.

    Google Scholar 

  • Hildebrand, P. H., and B. Ackerman, 1984: Urban effects on the convective bound-ary layer. J. Atmos. Sci., 41, 76–91.

    Article  Google Scholar 

  • Holton, J. L., 1972: An Introduction to Dynamic Meteorology. Academic Press, New York, 319 pp.

    Google Scholar 

  • Hunt, J. C., 1981: Some connections between fluid mechanics and the solving of industrial and environmental fluid-flow problems. J. Fluid Mech., 106, 103–130.

    Article  Google Scholar 

  • Hunt, J. C. R., 1985: Diffusion in the stably stratified atmospheric boundary layer. J. Climate Appl. Meteor., 24, 1187–1195.

    Article  Google Scholar 

  • Joffre, S. M., 1985a: Effects of local accelerations and baroclinity on the mean structure of the atmospheric boundary layer over the sea. Bound.-Layer Meteor., 32, 237–255.

    Article  Google Scholar 

  • Joffre, S. M., 1985b: The structure of the marine atmospheric boundary layer: A review from the point of view of diffusivity, transport and deposition processes. Technical Report No. 29, Finnish Meteorological Institute, Helsinki.

    Google Scholar 

  • Kaimal, J. C., and D. A. Haugen, 1969: Some errors in the measurement of Reynolds stress. J. Appl. Meteor., 8, 460–462.

    Article  Google Scholar 

  • Kaimal, J. C., J. C. Wyngaard, D. A. Haugen, O. R. Coté, Y. Izumi, S. J. Caughey, and C. J. Readings, 1976: Turbulence structure in the convective boundary layer. J. Atmos. Sci., 33, 2152–2169.

    Article  Google Scholar 

  • Kondo, J., O. Kanechika, and N. Yasuda, 1978: Heat and momentum transfers under strong stability in the atmospheric surface layer. J. Atmos. Sci., 35, 1012–1021.

    Article  Google Scholar 

  • LeMone, M. A., 1980: The marine boundary layer. Workshop on the Planetary Boundary Layer, J. C. Wyngaard, Ed., Amer. Meteor. Soc., Boston, 182–234.

    Google Scholar 

  • Lenschow, D. H., J. C. Wyngaard, and W. T. Pennell, 1980: Mean-field and second-moment budgets in a baroclinic convective boundary layer. J. Atmos. Sci., 37, 1313–1326.

    Article  Google Scholar 

  • Lilly, D. K., 1968: Models of cloud-topped mixed layers under a strong inversion. Quart. J. Roy. Meteor. Soc., 94, 292–309.

    Article  Google Scholar 

  • Lumley, J. L., and H. A. Panofsky, 1964: The Structure of Atmospheric Turbulence. Wiley Interscience, New York, 239 pp.

    Google Scholar 

  • McAllister, L. G., J. R. Pollard, A. R. Mahoney, and P. J. R. Shaw, 1969: Acoustic sounding—A new approach to the study of atmospheric structure. Proc. IEEE, 57, 571–578.

    Article  Google Scholar 

  • McBean, G., Ed., 1979: The Planetary Boundary Layer. Technical Note No. 165, WMO, Geneva, Switzerland, 201 pp.

    Google Scholar 

  • Moeng, C. H., and J. C. Wyngaard, 1984: Statistics of conservative scalars in the convective boundary layer. J. Atmos. Sci., 41, 3161–3169.

    Article  Google Scholar 

  • Monin, A. S., and A. M. Yaglom, 1971: Statistical Fluid Mechanics. MIT Press, Cambridge, 769 pp.

    Google Scholar 

  • Nicholls, S., and M. A. LeMone, 1980: The fair weather boundary layer in GATE: The relationship of subcloud fluxes and structure to the distribution and enhancement of cumulus clouds. J. Atmos. Sci., 37, 2051–2067.

    Article  Google Scholar 

  • Nieuwstadt, F. T. M., 1981: The steady-state height and resistance laws of the nocturnal boundary layer: Theory compared with Cabauw observations. Bound.-Layer Meteor., 20, 3–17.

    Article  Google Scholar 

  • Nieuwstadt, F. T. M., 1984: The turbulent structure of the stable, nocturnal boundary layer. J. Atmos. Sci., 41, 2202–2216.

    Article  Google Scholar 

  • Nieuwstadt, F. T. M., and R. A. Brost, 1986: The decay of convective turbulence. J. Atmos. Sci., 43, 532–546.

    Article  Google Scholar 

  • Nieuwstadt, F. T. M., and H. Tennekes, 1981: A rate equation for the nocturnal boundary-layer height. J. Atmos. Sci., 38, 1418–1428.

    Article  Google Scholar 

  • Nieuwstadt, F. T. M., and H. van Dop, Eds., 1982: Atmospheric Turbulence and Air Pollution Modelling. Reidel, Dordrecht, 358 pp.

    Google Scholar 

  • Panofsky, H. A., and J. Dutton, 1984: Atmospheric Turbulence. Wiley, New York, 397 pp.

    Google Scholar 

  • Panofsky, H. A., H. Tennekes, D. H. Lenschow, and J. C. Wyngaard, 1977: The characteristics of turbulent velocity components in the surface layer under convective conditions. Bound.-Layer Meteor., 11, 355–361.

    Article  Google Scholar 

  • Post, M. J., and W. D. Neff, 1986: Doppler lidar measurements of winds in a narrow mountain valley. Bull. Amer. Meteor. Soc., 67, 274–281.

    Article  Google Scholar 

  • Randerson, D., Ed., 1984: Atmospheric Science and Power Production. U. S. Dept. of Energy DOE/TIC-27601. (Available from NTIS as DE84005177.)

    Google Scholar 

  • Ray, P. S., Ed., 1986: Mesoscale Meteorology and Forecasting. Amer. Meteor. Soc., Boston, 793 pp.

    Google Scholar 

  • Rogers, D. P., J. A. Businger, and H. Charnock, 1985: A numerical investigation of the JASIN boundary layer. Bound.-Layer Meteor., 32, 373–400.

    Article  Google Scholar 

  • Smith, F. B., 1957: The diffusion of smoke from a continuous elevated point-source into a turbulent atmosphere. J. Fluid Mech., 2, 49–76.

    Article  Google Scholar 

  • Szoke, E. J., M. L. Weisman, J. M. Brown, F. Caracena, and T. W. Schlatter, 1984: A subsynoptic analysis of the Denver tornadoes of 3 June 1981. Mon. Wea. Rev., 112, 790–808.

    Article  Google Scholar 

  • Tennekes, H., and J. L. Lumley, 1972: A First Course in Turbulence. MIT Press, Cambridge, 300 pp.

    Google Scholar 

  • Tuzet, A., 1982: Contribution a l’étude des lois de similitude dans la couche limité planetaire en regime convectif. Thesis, Université de Clermont II, France. Willis, G. E., and J. W. Deardorff, 1974: A laboratory model of the unstable planetary boundary layer. J. Atmos. Sci., 31, 1297–1307.

    Google Scholar 

  • Wipperman, F., 1973: The Planetary Boundary Layer of the Atmosphere. Deutscher Wetterdienst, Offenbach, 346 pp.

    Google Scholar 

  • Wyngaard, J. C., 1975: Modeling the planetary boundary layer—extension to the stable case. Bound.-Layer Meteor., 9, 441–460.

    Article  Google Scholar 

  • Wyngaard, J. C., 1983: Lectures on the planetary boundary layer. Mesoscale Meteorology—Theories, Observations, and Models, D. K. Lilly and T. Gal-Chen, Eds., Reidel, Dordrecht, 603–650.

    Chapter  Google Scholar 

  • Wyngaard, J. C., Ed., 1984: Large-Eddy Simulation: Guidelines for its Application to Planetary Boundary Layer Research. Available from DTIC, AD-A146381.

    Google Scholar 

  • Wyngaard, J. C., 1985: Structure of the planetary boundary layer and implications for its modeling. J. Climate Appl. Meteor., 24, 1131–1142.

    Article  Google Scholar 

  • Wyngaard, J. C., 1986: Measurement physics. Probing the Atmospheric Boundary Layer, D. H. Lenschow, Ed., Amer. Meteor. Soc., Boston, 5–18.

    Google Scholar 

  • Wyngaard, J. C., 1987: Flow-distortion effects on scalar flux measurements in the surface layer: Implications for sensor design. To appear, Bound.-Layer Meteor.

    Google Scholar 

  • Wyngaard, J. C., and R. A. Brost, 1984: Top-down and bottom-up diffusion of a scalar in the convective boundary layer. J. Atmos. Sci., 41, 102–112.

    Article  Google Scholar 

  • Wyngaard, J. C., and O. R. Coté, 1971: The budgets of turbulent kinetic energy and temperature variance in the atmospheric surface layer. J. Atmos. Sci., 28, 190–201.

    Article  Google Scholar 

  • Wyngaard, J. C., and O. R. Coté, 1974: The evolution of a convective planetary boundary layer-A higher-order-closure model study. Bound.-Layer Meteor., 7, 289–308.

    Article  Google Scholar 

  • Wyngaard, J. C., O. R. Coté, and Y. Izumi, 1971: Local free convection, similarity, and the budgets of shear stress and heat flux. J. Atmos. Sci., 28, 1171–1182.

    Article  Google Scholar 

  • Zilitinkevich, S. S., 1972: On the determination of the height of the Ekman bound-ary layer. Bound.-Layer Meteor., 3, 141–145.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 American Meteorological Society

About this chapter

Cite this chapter

Wyngaard, J.C. (1988). Structure of the PBL. In: Venkatram, A., Wyngaard, J.C. (eds) Lectures on Air Pollution Modeling. American Meteorological Society, Boston, MA. https://doi.org/10.1007/978-1-935704-16-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-935704-16-4_2

  • Publisher Name: American Meteorological Society, Boston, MA

  • Online ISBN: 978-1-935704-16-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics