Skip to main content

The Stratosphere in the Southern Hemisphere

  • Chapter

Part of the book series: Meteorological Monographs ((METEOR))

Abstract

The stratosphere over Antarctica is one of the most inaccessible places on the planet. During the antarctic winter, it extends from about 8 to 55 km above the surface, has temperatures colder than −90°C, and winds that are greater than 100 m s−1. Yet even this terribly remote and hostile region has felt man’s impact. The antarctic ozone hole is a clear example of how our industrial society can affect the atmosphere even in this remote corner of the earth. The tremendous ozone losses over Antarctica observed each spring have ultimately resulted from man-made chlorine compounds, and these ozone losses have led to increased levels of biologically harmful ultraviolet radiation at the earth’s surface. Understanding the meteorology of the southern stratosphere is the key to our understanding of the antarctic ozone hole.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, D. R., J. L. Stanford, L. S. Elson, E. F. Fishbein, L. Froidevaux, and J. W. Waters, 1997: The 4-day wave as observed from the Upper Atmosphere Research Satellite microwave limb sounder. J. Atmos. Sci., 54, 420–434.

    Article  Google Scholar 

  • Anderson, J. G., W. H. Brune, S. A. Lloyd, D. W. Toohey, S. P. Sander, W. L. Starr, M. Loewenstein, and J. R. Podolske, 1989: Kinetics of 03 destruction by C1O and BrO within the antarctic vortex: An analysis based on in situ ER-2 data. J. Geophys. Res., 94, 11 480–11 520.

    Google Scholar 

  • Andrews, D. G., and M. E. McIntyre, 1978: Generalized EliassenPalm and Charney–Drazin theorems for waves on axisymmet-ric mean flows in compressible atmospheres. J. Atmos. Sci., 35, 175–185.

    Article  Google Scholar 

  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.

    Google Scholar 

  • Atkinson, R. J., and J. R. Easson, 1989: Reevaluation of the Australian total ozone data record. Proc. Quadr. Ozone. Symp., Gottingen, Germany, A. Deepak, 168–171.

    Google Scholar 

  • Atkinson, R. J., W. A. Matthews, P. A. Newman, and R. A. Plumb, 1989: Evidence of the mid-latitude impact of antarctic ozone depletion. Nature, 340, 290–294.

    Article  Google Scholar 

  • Baldwin, M. P., and J. R. Holton, 1988: Climatology of the stratospheric polar vortex and planetary wave breaking. J. Atmos. Sci., 45, 1123–1142.

    Article  Google Scholar 

  • Baldwin, M. P., and D. O’Sullivan, 1995: Stratospheric effects of ENSO-related tropospheric circulation anomalies. J. Climate., 8, 649–667.

    Article  Google Scholar 

  • Bojkov, R. D., and V. E. Fioletov, 1995: Estimating the global ozone characteristics during the last 30 years. J. Geophys. Res., 100, 16 537–16 551.

    Google Scholar 

  • Boville, B. A., 1995: Middle atmosphere version of CCM2 (MACCM2): Annual cycle and interannual variability. J. Geophys. Res., 100, 9017–9040.

    Article  Google Scholar 

  • Bowman, K. P., 1989: Global patterns of the quasi-biennial oscillation in total ozone..1. Atmos. Sci., 46, 3328–3343.

    Article  Google Scholar 

  • Bowman, K. P., 1993a: Barotropic simulation of large-scale mixing in the antarctic polar vortex. J. Atmos. Sci., 50, 2901–2914.

    Article  Google Scholar 

  • Bowman, K. P., 1993b: Large-scale isentropic mixing properties of the antarctic polar vortex from analyzed winds. J. Geophys. Res., 98, 23 013–23 027.

    Google Scholar 

  • Bowman, K. P., and N. J. Mangus, 1993: Observations of deformation and mixing of the total ozone field in the antarctic polar vortex. J. Atmos. Sci., 50, 2915–2921.

    Article  Google Scholar 

  • Boyd, J., 1976: The noninteraction of waves with the zonally averaged flow on a spherical earth and the interrelationship of eddy fluxes of energy, heat, and momentum. J. Atmos. Sci., 33, 2285–2291.

    Article  Google Scholar 

  • Brasseur, G. P., X. Tie, and P. J. Rasch, 1997: A three-dimensional simulation of the current and pre-industrial antarctic ozone and its impact on mid-latitudes and upper troposphere. J. Geophys. Res., 102, 8909–8930.

    Article  Google Scholar 

  • Buchart, N., and E. Remsberg, 1986: The area of the stratospheric polar vortex as a diagnostic for tracer transport on isentropic surfaces. J. Atmos. Sci., 43, 1319–1339.

    Article  Google Scholar 

  • Buchart, N., and J. Austin, 1996: On the relationship between the quasi-biennial oscillation, total chlorine and the severity of the antarctic ozone hole. Quart. J. Roy. Meteor. Soc., 122, 183217.

    Google Scholar 

  • Burks, D., and C. B. Leovy, 1986: Planetary waves near the mesospheric easterly jet. Geophys. Res. Lett., 13, 193–196.

    Article  Google Scholar 

  • Cariolle, D., A. Lasserre-Bigorry, and J. F. Boyer, 1990: A general circulation model simulation of the springtime antarctic ozone decrease and its impact on mid-latitudes. J. Geophys. Res., 95, 1883–1898.

    Article  Google Scholar 

  • Chapman, S., 1930: On ozone and atomic oxygen in the upper atmosphere. Philos. Mag., 10, 369–376.

    Article  Google Scholar 

  • Charney, J. G., and P. G. Drazin, 1961: Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res., 66, 83–109.

    Article  Google Scholar 

  • Chen, P., 1994: The permeability of the antarctic vortex edge. J. Geophys. Res., 99, 20 563–20 571.

    Google Scholar 

  • Chen, P., J. R. Holton, A. O’Neill, and R. Swinbank, 1994: Quasi-horizontal transport and mixing in the antarctic stratosphere. J. Geophys. Res., 99, 16 851–16 855.

    Google Scholar 

  • Chipperfield, M. P., M. L. Santee, L. Froidevaux, G. L. Manney, W. G. Read, J. W. Waters, A. E. Roche, and J. M. Russell, 1996: Analysis of UARS data in the southern polar vortex in September 1992 using a chemical transport model. J. Geophys. Res., 101, 18 861–18 881.

    Google Scholar 

  • Dickinson, R. E., 1969: Theory of planetary wave—zonal flow interaction. J. Atmos. Sci., 26, 73–81.

    Article  Google Scholar 

  • Douglass, A. R., M. R. Schoeberl, R. S. Stolarski, J. W. Waters, J. M. Russell III, A. E. Roches, and S. T. Massie, 1995: Interhemispheric differences in springtime production of HC1 and C1ONO2 in the polar vortices. J. Geophys. Res. 100 13 967–13 978.

    Google Scholar 

  • Dunkerton, T. J., 1978: On the mean meridional mass motions of the stratosphere and mesosphere. J. Atmos. Sci., 35, 2325–2333., 1988: Body force circulation and the antarctic ozone minimum. J. Atmos. Sci., 45, 427–438.

    Article  Google Scholar 

  • Dunkerton, T. J., and M. P. Baldwin, 1991: Modes of interannual variability in the stratosphere. Geophys. Res. Lett., 19, 49–52.

    Article  Google Scholar 

  • Dye, J., B. Gandrud, D. Baumgardner, K. Chan, G. Ferry, M. Loewenstein, K. Kelly, and J. Wilson, 1990: Observed particle evolution in the polar stratospheric cloud of January 24, 1989. Geophys. Res. Lett., 17, 413–416.

    Article  Google Scholar 

  • Edmon, H. J., B. J. Hoskins, and M. E. McIntyre, 1980: EliassenPalm cross sections for the troposphere. J. Atmos. Sci., 37, 2600–2616.

    Article  Google Scholar 

  • Eluszkiewicz, J., R. A. Plumb, and N. Nakamura, 1995: Dynamics of wintertime stratospheric transport in the Geophysical Fluid Dynamics Laboratory SKYHI general circulation model. J. Geophys. Res., 100, 20 883–20 900.

    Google Scholar 

  • Farman, J. C., B. G. Gardiner, and J. D. Shanklin, 1985: Large losses of total ozone in Antarctica reveal seasonal ClOx/NO. interaction. Nature, 315, 207–210.

    Google Scholar 

  • Finger, F. G., M. E. Gelman, J. D. Wild, M. L. Chanin, A. Hauchecorne, and A. J. Miller, 1993: Evaluation of NMC upper-stratospheric temperature analyses using rocketsonde and lidar data. Bull. Amer. Meteor. Soc. 74 789–799.

    Google Scholar 

  • Fisher, M., A. O’Neill, and R. Sutton, 1993: Rapid descent of mesospheric air in the stratospheric polar vortex. Geophys. Res. Lett., 20, 1267–1270.

    Article  Google Scholar 

  • Froidevaux, L., J. W. Waters, W. G. Read, L. S. Elson, D. A. Flower, and R. F. Jarnot, 1994: Global ozone observations from the UARS MLS: An overview of zonal-mean results. J. Atmos. Sei., 51, 2846–2866.

    Article  Google Scholar 

  • Garcia, R. R., 1987: On the mean meridional circulation of the middle atmosphere. J. Atmos. Sci., 44, 3599–3609.

    Article  Google Scholar 

  • Garcia, R. R., and S. Solomon, 1983: A numerical model of the zonally averaged dynamical and chemical structure of the middle atmosphere. J. Geophys. Res., 88, 1379–1400.

    Article  Google Scholar 

  • Garcia, R. R., and B. A. Boville, 1994: “Downward control” of the mean meridional circulation and temperature distribution of the polar winter stratosphere. J. Atmos. Sci., 51, 2238–2245.

    Google Scholar 

  • Geller, M. A., and M. F. Wu, 1987: Troposphere—stratosphere general circulation statistics. Transport Processes in the Middle Atmosphere. Reidel Publishers, 3–17.

    Google Scholar 

  • Gelman, M. E., and R. M. Nagatani, 1977: Objective analyses of height and temperature at the 5-, 2- and 0.4-mb levels using meteorological rocketsonde and satellite radiation data. Space Research, 17, 117–122.

    Google Scholar 

  • Gelman, M. E., A. J. Miller, K. W. Johnson, and R. M. Nagatani, 1986: Detection of long term trends in global stratospheric temperature from NMC analyses derived from NOAA satellite data. Adv. Space Res., 6 (10), 17–26.

    Article  Google Scholar 

  • Gille, J. C., and L. V. Lyjak, 1987: Radiative heating and cooling rates in the middle atmosphere.. 1. Atmos. Sci., 43, 2215–2229.

    Article  Google Scholar 

  • Gray, L. T., and T. J. Dunkerton, 1990: The role of the seasonal cycle in the quasi-biennial oscillation in ozone. J. Atmos. Sci., 47, 2429–2451.

    Article  Google Scholar 

  • Harris, N. R. P., and Coauthors, 1997: Trends in stratospheric and tropospheric ozone. J. Geophys. Res., 102, 1571–1590. Hartley, W. N., 1880: On the probable absorption of solar radiation by atmospheric ozone. Chem. News, 42, 268–274.

    Google Scholar 

  • Hartmann, D. L., 1976: The structure of the stratosphere in the Southern Hemisphere during late winter 1973 as observed by satellite.. 1. Atmos. Sci., 33, 1141–1154.

    Article  Google Scholar 

  • Hartmann, D. L., 1983: Barotropic instability of the polar night jet stream. J. Atmos. Sci., 40, 817–835.

    Article  Google Scholar 

  • Hartmann, D. L., C. R. Mechoso, and K. Yamazaki, 1984: Observations of wave-mean flow interaction in the Southern Hemisphere. J. Atmos. Sci., 41, 351–362.

    Article  Google Scholar 

  • Hartmann, D. L., K. R. Chan, B. L. Gary, M. R. Schoeberl, P. A. Newman, R. L. Martin, M. Loewenstein, J. R. Podolske, and S. E. Strahan, 1989: Potential vorticity and mixing in the south polar vortex during spring. J. Geophys. Res., 94, 11 625–11 640.

    Google Scholar 

  • Harwood, R. S., 1975: The temperature structure of the Southern Hemisphere stratosphere August—October 1971. Quart. J. Roy. Meteor. Soc., 101, 75–91.

    Google Scholar 

  • Harwood, R. S., and Coauthors, 1993: Springtime stratospheric water vapor in the Southern Hemisphere as measured by MLS. Geophys. Res. Lett., 20, 1235–1238.

    Article  Google Scholar 

  • Haynes, P. H., C. J. Marks, M. E. McIntyre, T. G. Shepherd, and K. P. Shine, 1991: On the “downward control” of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci., 48, 651–678.

    Article  Google Scholar 

  • Herman, J. R., and Coauthors, 1995: Meteor 3 total ozone mapping spectrometer observations of the 1993 ozone hole. J. Geophys. Res., 100, 2973–2984.

    Google Scholar 

  • Hirota, I., and T. Hirooka, 1984: Normal-mode Rossby waves observed in the upper stratosphere. Part I: First symmetric modes of zonal wavenumbers 1 and 2. J. Atmos. Sci., 41, 1253–1267.

    Article  Google Scholar 

  • Hitchman, M. H., J. C. Gille, C. D. Rodgers, and G. P. Grasseur, 1989: The separated polar winter stratopause: A gravity wave—driven climatological feature. J. Atmos. Sci., 46, 410–422.

    Article  Google Scholar 

  • Hofmann, D. J., and T. Deshler, 1989: Comparison of stratospheric clouds in the Antarctic and Arctic. Geophys. Res. Lett., 16, 1429–1432.

    Article  Google Scholar 

  • Hofmann, D. J., J. M. Rosen, J. W. Harder, and J. V. Hereford, 1989: Balloon-borne measurements of aerosol, condensation nuclei, and cloud particles in the stratosphere at McMurdo Station, Antarctica, during the spring of 1987. J. Geophys. Res., 94, 11 253–11 269.

    Google Scholar 

  • Hofmann, D. J., S. J. Oltmans, J. A. Lathrop, J. M. Harris, and H. Voemel, 1994: Record low ozone at the South Pole in the spring of 1993. Geophys. Res. Lett., 21, 421–424.

    Article  Google Scholar 

  • Hofmann, D. J., J. M. Harris, B. J. Johnson, and J. A. Lathrop, 1997: Ten years of ozonesonde measurements at the South Pole: Implications for recovery of springtime antarctic ozone loss. J. Geophys. Res., 102, 8931–8943.

    Article  Google Scholar 

  • Hollandsworth, S. M., R. D. McPeters, L. E. Plynn, W. Planet, A. J. Miller, and S. Chandra, 1995: Ozone trends deduced from combined Nimbus 7 SBUV and NOAA 11 SBUV/2 data. Geophys. Res. Lett. 22 905–908.

    Google Scholar 

  • Holton, J. R., 1983: The influence of gravity wave breaking on the general circulation of the middle atmosphere. J. Atmos. Sci., 40, 2497–2507.

    Article  Google Scholar 

  • Holton, J. R., and H.-C. Tan, 1980: The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 mb. J. Atmos. Sci., 37, 2200–2208.

    Article  Google Scholar 

  • Holton, J. R., and, 1982: The quasi-biennial oscillation in the Northern Hemisphere lower stratosphere. J. Meteor. Soc. Japan, 60, 140–148.

    Google Scholar 

  • Holton, J. R., and W.-K. Choi, 1988: Transport circulation deduced from SAMS trace species data. J. Atmos. Sci., 45, 1929–1939.

    Article  Google Scholar 

  • Holton, J. R., P. H. Haynes, M. E. McIntyre, A. R. Douglas, R. B. Rood, and L. Pfister, 1995: Stratosphere—troposphere exchange. Rev. Geophys., 33, 403–439.

    Article  Google Scholar 

  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877–946.

    Article  Google Scholar 

  • Hurrell, J. W., and H. van Loon, 1994: A modulation of the atmospheric annual cycle in the Southern Hemisphere. Tellus, 46A, 325–338.

    Article  Google Scholar 

  • Jiang, Y., Y. L. Yung, and R. W. Zurek, 1996: Decadal evolution of the antarctic ozone hole. J. Geophys. Res., 101, 8985–8999.

    Article  Google Scholar 

  • Johnston, H. S., 1971: Reduction of stratospheric ozone by nitrogen oxide catalysts from SST exhaust. Science, 173, 517–522.

    Article  Google Scholar 

  • Jones, A. E., and J. D. Shanklin, 1995: Continued decline of total ozone over Halley, Antarctica since 1985. Nature, 376, 409411.

    Google Scholar 

  • Jones, R. L., and J. A. Pyle, 1984: Observations of CH4 and N2O by the NIMBUS-7 SAMS: A comparison with in-situ data and two-dimensional numerical model calculations. J. Geophys. Res., 89, 5263–5279.

    Article  Google Scholar 

  • Juckes, M. N., and M. E. McIntyre, 1987: A high resolution, one-layer model of breaking planetary waves in the stratosphere. Nature, 328, 590–596.

    Article  Google Scholar 

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471.

    Article  Google Scholar 

  • Karoly, D. J., and B. J. Hoskins, 1982: Three-dimensional propagation of planetary waves. J. Meteor. Soc. Japan, 60, 109–123.

    Google Scholar 

  • Kelly, K. K., A. F. Tuck, L. E. Heidt, M. Loewenstein, J. F. Podolske, and S. E. Strahan, 1990: Comparison of ER-2 measurements of stratospheric water vapor between the 1987 antarctic and 1989 arctic airborne missions. Geophys. Res. Lett., 17, 465–468.

    Article  Google Scholar 

  • Kiehl, J. T., B. A. Boville, and B. P. Briegleb, 1988: Response of a general circulation model to a prescribed antarctic ozone hole. Nature, 332, 501–504.

    Article  Google Scholar 

  • Kumer, J. B., J. L. Mergenthaler, and A. E. Roche, 1994: CLAES CH4, N2O and CCl2F2 (F12) global data. Geophys. Res. Lett., 20, 1239–1242.

    Article  Google Scholar 

  • Labitzke, K., 1982: On the interannual variability of the middle stratosphere during the northern winters. J. Meteor. Soc. Japan, 60, 124–139.

    Google Scholar 

  • Labitzke, K., and H. van Loon, 1972: The stratosphere in the Southern Hemisphere. Meteorology of the Southern Hemisphere, Meteor. Monogr., No. 35, Amer. Meteor. Soc., 113–138.

    Google Scholar 

  • Labitzke, K., and, 1987: Association between the 11-year solar cycle, the QBO and the atmosphere. Part I: The troposphere and the stratosphere in the Northern Hemisphere in winter. J. Amer. Terr. Phys., 50, 197–206.

    Google Scholar 

  • Labitzke, K., and, 1995: Connection between the troposphere and stratosphere on a decadal time scale. Tellus, 47A, 275–286.

    Google Scholar 

  • Lahoz, W. A., and Coauthors, 1996: Vortex dynamics and the evolution of water vapor in the stratosphere of the Southern Hemisphere. Quart. J. Roy. Meteor. Soc., 122, 423–450.

    Article  Google Scholar 

  • Lait, L. R., and J. L. Stanford, 1988: Fast, long-lived features in the polar stratosphere. J. Atmos. Sci., 45, 3800–3809.

    Article  Google Scholar 

  • Lait, L. R., M. R. Schoeberl, and P. A. Newman, 1989: Quasi-biennial modulation of the antarctic ozone depletion. J. Geophys. Res. 94 11 559–11 571.

    Google Scholar 

  • Lawrence, B. N., and W. J. Randel, 1996: Variability in the mesosphere observed by the NIMBUS 6 PMR. J. Geophys. Res., 101, 23 475–23 489.

    Google Scholar 

  • Leovy, C. B., and P. J. Webster, 1976: Stratospheric long waves: Comparison of thermal structure in the Northern and Southern Hemispheres. J. Atmos. Sci., 33, 1624–1638.

    Article  Google Scholar 

  • Leovy, C. B., C. R. Sun, M. H. Hitchmann, E. E. Remsberg, J. M. Russell III, L. L. Gordley, J. M. Gille, and L. V. Lyjak, 1985: Transport of ozone in the middle stratosphere: Evidence for planetary-wave breaking. J. Atmos. Sci., 42, 230–244.

    Article  Google Scholar 

  • Limpasuvan, V., and C. B. Leovy, 1995: Observations of the two-day wave near the southern summer stratopause. Geophys. Res. Lett., 22, 2385–2388.

    Article  Google Scholar 

  • Lindzen, R. S., 1981: Turbulence and stress owing to gravity wave and tidal breakdown. J. Geophys. Res., 86, 9707–9714.

    Article  Google Scholar 

  • Mahlman, J. D., and L. J. Umscheid, 1987: Comprehensive modeling of the middle atmosphere: The influence of horizontal resolution. Transport Processes in the Middle Atmosphere, G. Visconti, Ed., D. Reidel Publishing Co., 251–256.

    Book  Google Scholar 

  • Mahlman, J. D., J. P. Pinto, and L. J. Umscheid, 1994: Transport, radiative, and dynamical effects of the antarctic ozone hole: A GFDL “SKYHI” model experiment. J. Atmos. Sci., 51, 489–508.

    Article  Google Scholar 

  • Manney, G. L., 1991: The stratospheric 4-day wave in NMC data. J. Atmos. Sci., 48, 1798–1811.

    Article  Google Scholar 

  • Manney, G. L., and W. J. Randel, 1993: Instability at the winter strato-pause: A mechanism for the 4-day wave. J. Atmos. Sci., 50, 3928–3938.

    Article  Google Scholar 

  • Manney, G. L., C. R. Mechoso, L. S. Elson, and J. D. Farrara, 1991a: Planetary-scale waves in the Southern Hemisphere winter and early spring stratosphere: Stability analysis. J. Atmos. Sci., 48, 2509–2523.

    Article  Google Scholar 

  • Manney, G. L., J. D. Farrara, and G. R. Mechoso, 1991b: The behavior of wave 2 in the Southern Hemisphere stratosphere during late winter and early spring. J. Atmos. Sci., 48, 976–998.

    Article  Google Scholar 

  • Manney, G. L., R. W. Zurek, A. O’Neill, and R. Swinbank, 1994: On the motion of air through the stratospheric polar vortex. J. Atmos. Sci., 51, 2973–2994.

    Article  Google Scholar 

  • Manney, G. L., L. Froidevaux, J. W. Waters, and R. W. Zurek, 1995: Evolution of microwave limb sounder ozone and the polar vortex during winter. J. Geophys. Res., 100, 2953–2972.

    Article  Google Scholar 

  • Manney, G. L., R. Swinbank, S. T. Massie, M. E. Gelman, A. J. Miller, R. Nagatani, A. O’Neill, and R. W. Zurek, 1996: Comparison of UKMO and NMC stratospheric analyses during northern and southern winter. J. Geophys. Res., 101, 10 311–10 334.

    Google Scholar 

  • Matsuno, T., 1970: Vertical propagation of stationary planetary waves in the winter Northern Hemisphere. J. Atmos. Sci., 27, 871–883.

    Article  Google Scholar 

  • McCormick, M. P., H. M. Steele, P. Hamill, W. P. Chu, and T. J. Swissler, 1982: Polar stratospheric cloud sightings by SAM II. J. Atmos. Sci., 39, 1387–1397.

    Article  Google Scholar 

  • McElroy, M. B., R. J. Salawitch, S. C. Wofsy, and J. A. Logan, 1986: Reductions of antarctic ozone due to synergistic interactions of chlorine and biomine. Nature, 321, 759–762.

    Article  Google Scholar 

  • McIntyre, M. E., 1992: Atmospheric dynamics: Some fundamentals, with observational implications. The Use of EOS for Studies of Atmospheric Physics, J. C. Gille and G. Visconti, Eds., North-Holland, 313–386.

    Google Scholar 

  • McIntyre, M. E., 1995: The stratospheric polar vortex and sub-vortex: Fluid dynamics and midlatitude ozone loss. Phil. Trans. R. Soc. Lond., 352, 227–240.

    Article  Google Scholar 

  • McIntyre, M. E., and T. N. Palmer, 1983: Breaking planetary waves in the stratosphere. Nature, 305, 593–600.

    Article  Google Scholar 

  • McIntyre, M. E., and, 1984: The “surf zone” in the stratosphere. J. Atmos. Terr. Phys., 46, 825–849.

    Article  Google Scholar 

  • McPeters, R., and Coauthors, 1993: NIMBUS-7 total ozone mapping spectrometer (TOMS) data products users guide. NASA Ref. Pub. 1323, 89 pp.

    Google Scholar 

  • McPeters, R., S. M. Hollandsworth, L. E. Flynn, J. R. Herman, and C. J. Seftor, 1996: Long-term ozone trends derived from the 16-year combined Nimbus 7/Meteor 3 TOMS version 7 record. Geophys. Res. Lett., 23, 3699–3702.

    Article  Google Scholar 

  • Mechoso, C. R., and D. L. Hartmann, 1982: An observational study of traveling planetary waves in the Southern Hemisphere. J. Atmos. Sci., 39, 1921–1935.

    Article  Google Scholar 

  • McPeters, R., and J. D. Farrara, 1985: Climatology and interan-nual variability of wave, mean-flow interaction in the Southern Hemisphere. J. Atmos. Sci., 42, 2189–2206.

    Article  Google Scholar 

  • McPeters, R., A. O’Neill, V. D. Pope, and J. D. Farrara, 1988: A study of the stratospheric final warming of 1982 in the Southern Hemisphere. Quart. J. Roy. Meteor. Soc., 114, 1365–1384.

    Article  Google Scholar 

  • Mergenthaler, J. L., J. B. Kumer, A. E. Roche, and S. T. Massie, 1997: Distribution of antarctic polar stratospheric clouds as seen by the CLAES experiment. J. Geophys. Res., 102, 19 161–19 170.

    Google Scholar 

  • Molina, L. T., and M. J. Molina, 1987: Production of C1202 from the self-reaction of the C10 radical. J. Phys. Chem., 91, 433–436.

    Article  Google Scholar 

  • Molina, M. J., and F. S. Rowland, 1974: Stratospheric sink for chlorofluoromethanes: Chlorine atom-catalyzed destruction of ozone. Nature, 249, 810–812.

    Article  Google Scholar 

  • Montzka, S. A., J. H. Butler, R. C. Meyers, T. M. Thompson, T. H. Swanson, A. D. Clark, L. T. Locke, and J. W. Elkins, 1996: Decline in the tropospheric abundance of halogen from halo-carbons: Implications for stratospheric ozone depletion. Science, 272, 1318–1322.

    Article  Google Scholar 

  • Nash, E. R., P. A. Newman, J. E. Rosenfield, and M. R. Schoeberl, 1996: An objective determination of the polar vortex using Ertel’s potential vorticity. J. Geophys. Res., 101, 9471–9478.

    Article  Google Scholar 

  • Newman, P. A., 1986: The final warming and polar vortex disappearance during the Southern Hemisphere spring. Geophys. Res. Lett., 13, 1228–1231.

    Article  Google Scholar 

  • Newman, P. A., and W. J. Randel, 1988: Coherent ozone-dynamical changes during the Southern Hemisphere spring, 1979–1986. J. Geophys. Res., 93, 12 585–12 606.

    Google Scholar 

  • Newman, P. A., and M. R. Schoeberl, 1995: A reinterpretation of the data from the NASA stratosphere-troposphere exchange project. Geophys. Res. Lett., 22, 2501–2504.

    Article  Google Scholar 

  • North, G. R., F. J. Moeng, T. L. Bell, and R. F. Calahan, 1982: The latitude dependence of the variance of zonally averaged quantities. Mon. Wea. Rev., 110, 319–326.

    Article  Google Scholar 

  • Norton, W. A., 1994: Breaking Rossby waves in a model stratosphere diagnosed by a vortex-following coordinate system and a technique for advancing material contours. J. Atmos. Sci., 51, 654–673.

    Article  Google Scholar 

  • Olaguer, E. P., H. Yang, and K. K. Tung, 1992: A reexamination of the radiative balance of the stratosphere. J. Atmos. Sci., 49, 1242–1263.

    Article  Google Scholar 

  • O’Neill, A., and V. Pope, 1990: The seasonal evolution of the extra-tropical stratosphere in the Southern and Northern Hemisphere: Systematic changes in potential vorticity and the nonconservative effects of validation. Dynamics, Transport and Photochemistry in the Middle Atmosphere of the Southern Hemisphere, A. O’Neill, Ed., Kluwer, 33–54.

    Google Scholar 

  • O’Sullivan, D., and R. E. Young, 1992: Modeling the quasi-biennial oscillation’s effect on the winter stratospheric circulation. J. Atmos. Sci., 49, 2437–2448.

    Article  Google Scholar 

  • North, G. R., and T. J. Dunkerton, 1994: Seasonal development of the extratropical QBO in a numerical model of the middle atmosphere. J. Atmos. Sci., 51, 3706–3721.

    Article  Google Scholar 

  • Pfister, L., 1985: Baroclinic instability of easterly jets with applications to the summer mesosphere. J. Atmos. Sci., 42, 313–330.

    Article  Google Scholar 

  • Pierce, R. B., W. L. Grose, J. M. Russell III, and A. F. Tuck, 1994: Spring dehydration in the antarctic vortex observed by HALOE. J. Atmos. Sci., 51, 2931–2941.

    Article  Google Scholar 

  • Plumb, R. A., 1983: Baroclinic instability of the summer mesosphere: A mechanism for the quasi-two-day wave? J. Atmos. Sci., 40, 262–270.

    Article  Google Scholar 

  • Plumb, R. A., 1989: On the seasonal cycle of stratospheric planetary waves. Pure Appl. Geophys., 130, 233–242.

    Article  Google Scholar 

  • Poole, L. R., and M. C. Pitts, 1994: Polar stratospheric cloud climatology based on Stratospheric Aerosol Measurement II observations from 1978 to 1989. J. Geophys. Res., 99, 13 08313 089.

    Google Scholar 

  • Portmann, R. W., S. Solomon, R. R. Garcia, L. W. Thomason, L. R. Poole, and M. P. McCormick, 1996: The role of aerosol variations in anthropogenic ozone depletion in the polar regions. J. Geophys. Res., 101, 22 991–23 006.

    Google Scholar 

  • Prata, A. J., 1984: The 4-day wave. J. Atmos. Sci., 41, 150–155.

    Article  Google Scholar 

  • Prather, M., M. M. Garcia, R. Snuzzo, and D. Rind, 1990: Global impact of the antarctic ozone hole: Dynamical dilution with a three-dimensional chemical transport model. J. Geophys. Res., 95, 3449–3471.

    Article  Google Scholar 

  • Prusa, J. M., P. K. Smolarkiewicz, and R. R. Garcia, 1996: Propagation and breaking at high altitudes of gravity waves excited by tropospheric forcing. J. Atmos. Sci., 53, 2186–2216.

    Article  Google Scholar 

  • Ramaswamy, V., M. D. Schwarzkopf, and W. J. Randel, 1996: Fingerprint of ozone depletion in the spatial and temporal pattern of recent lower-stratospheric cooling. Nature, 382, 616–618.

    Article  Google Scholar 

  • Randel, W. J., 1987: A study of planetary waves in the southern winter troposphere and stratosphere. Part I: Wave structure and vertical propagation. J. Atmos. Sci., 44, 917–935.

    Article  Google Scholar 

  • Randel, W. J., 1988: The seasonal evolution of planetary waves in the Southern Hemisphere stratosphere and troposphere. Quart. J. Roy. Meteor. Soc., 114, 1385–1409.

    Article  Google Scholar 

  • Randel, W. J., 1992: Global atmospheric circulation statistics, 1000–1 mb. NCAR Tech. Note, NCARITN-366 + STR, 256 pp.

    Google Scholar 

  • Randel, W. J., 1994: Observations of the 2-day wave in NMC strato- spheric analyses../. Atmos. Sci., 51, 306–313.

    Article  Google Scholar 

  • Randel, W. J., and I. M. Held, 1991: Phase speed spectra of transient eddy fluxes and critical layer absorption. J. Atmos. Sci., 48, 688697.

    Google Scholar 

  • Randel, W. J., and L. R. Lait, 1991: Dynamics of the 4-day wave in the Southern Hemisphere polar stratosphere. J. Atmos. Sci., 48, 2496–2508.

    Article  Google Scholar 

  • Randel, W. J., and J. B. Cobb, 1994: Coherent variations of monthly mean total ozone and lower stratospheric temperature. J. Geophys. Res., 99, 5433–5447.

    Article  Google Scholar 

  • Randel, W. J., and F. Wu, 1995: TOMS total ozone trends in potential vorticity coordinates. Geophys. Res. Lett., 22, 683–686.

    Article  Google Scholar 

  • Randel, W. J., and, 1998: Cooling of the arctic and antarctic polar stratospheres due to ozone depletion. J. Climate in press.

    Google Scholar 

  • Randel, W. J., J. C. Gille, A. E. Roche, J. B. Kumer, J. L. Mergenthaler, J. W. Waters, E. F. Fishbein, and W. A. Lahoz, 1993: Stratospheric transport from the Tropics to midlatitudes by planetary-wave mixing. Nature, 365, 533–535.

    Article  Google Scholar 

  • Randel, W. J., F. Wu, J. M. Russell III, and A. Roche, 1998: Seasonal cycles and interannual variability in stratospheric CH, and H2O observed in UARS HALOE data. J. Atmos. Sci., 55, 163–185.

    Article  Google Scholar 

  • Rodgers, C. D., 1976: Evidence for the five-day wave in the stratosphere. J. Atmos. Sci., 33, 710–711.

    Article  Google Scholar 

  • Rodgers, C. D., and A. J. Prata, 1981: Evidence for a traveling two-day wave in the middle atmosphere. J. Geophys. Res., 86, 9661–9664.

    Article  Google Scholar 

  • Rong-jui, H., and K. Gambo, 1982: The response of a hemispheric multi-level model atmosphere to forcing by topography and stationary heat sources. J. Meteor. Soc. Japan, 60, 93–108.

    Google Scholar 

  • Rosenfield, J. E., M. R. Schoeberl, and M. A. Geller, 1987: A computation of the stratospheric residual circulation using an accurate radiative transfer model. J. Atmos. Sci., 44, 859–876.

    Article  Google Scholar 

  • Rosenfield, J. E., P. A. Newman, and M. R. Schoeberl, 1994: Computations of diabatic descent in the stratospheric polar vortex. J. Geophys. Res., 99, 16 677–16 689.

    Google Scholar 

  • Rosenlof, K. H., 1995: The seasonal cycle of the residual mean meridional circulation in the stratosphere. J. Geophys. Res., 100, 5173–5191.

    Article  Google Scholar 

  • Rosenlof, K. H., A. F. Tuck, K. K. Kelly, J. M. Russell III, and M. P. McCormick, 1997: Hemispheric asymmetries in water vapor and inferences about transport in the lower stratosphere. J. Geophys. Res., 102, 13 213–13 234.

    Google Scholar 

  • Russell, J. M. III, and Coauthors, 1993a: The Halogen Occulation Experiment. J. Geophys. Res., 98, 10 777–10 797.

    Google Scholar 

  • Russell, A. F. Tuck, L. L. Gordley, J. H. Park, S. R. Drayson, J. E. Harries, R. J. Cicerone, and P. J. Crutzen, 1993b: HALOE antarctic observations in the spring of 1991. Geophys. Res. Lett., 20, 719–722.

    Article  Google Scholar 

  • Salby, M. L., 1981a: Rossby normal modes in nonuniform background conditions. Part II: Equinox and solstice conditions. J. Atmos. Sci., 38, 1827–1840.

    Article  Google Scholar 

  • Salby, M. L., 1981b: The 2-day wave in the middle atmosphere: Obser-vations and theory. J. Geophys. Res., 86, 9654–9660.

    Article  Google Scholar 

  • Santee, M., W. Read, J. Waters, L. Froidevaux, G. Manney, D. Flower, R. Jarnot, R. Harwood, and G. Peckham, 1995: Interhemispheric differences in polar stratospheric HNO3, H2O, C1O, and 03. Science, 267, 849–852.

    Article  Google Scholar 

  • Santee, M., and Coauthors, 1996: Chlorine deactivation in the lower stratosphere polar regions during later winter: Results from UARS. J. Geophys. Res., 101, 18 835–18 859.

    Google Scholar 

  • Schoeberl, M. R., and D. Hartmann, 1991: The dynamics of the stratospheric polar vortex and its relation to springtime ozone depletion. Science, 251, 46–48.

    Article  Google Scholar 

  • Schoeberl, M. R., and P. A. Newman, 1995: A multiple-level trajectory analysis of vortex filaments. J. Geophys. Res., 100, 25 80125 815.

    Google Scholar 

  • Schoeberl, M. R., L. R. Lait, P. A. Newman, and J. E. Rosenfield, 1992: The structure of the polar vortex. J. Geophys. Res., 97, 7859–7882.

    Article  Google Scholar 

  • Schoeberl, M. R., M. Luo, and J. E. Rosenfield, 1995: An analysis of the antarctic Halogen Occulation Experiment trace gas observations. J. Geophys. Res., 100, 5159–5172.

    Article  Google Scholar 

  • Schoeberl, M. R., A. R. Douglass, S. R. Kawa, A. E. Dessler, P. A. Newman, R. S. Stolarski, A. E. Roche, J. W. Waters, and J. M. Russell III, 1996: Development of the antarctic ozone hole. J. Geophys. Res., 101, 20 909–20 924.

    Google Scholar 

  • Shine, K. P., 1986: On the modelled thermal response of the antarctic stratosphere to a depletion of ozone. Geophys. Res. Lett., 13, 1331–1334.

    Article  Google Scholar 

  • Shine, K. P., 1987: The middle atmosphere in the absence of dynamic heat fluxes. Quart. J. Roy. Meteor. Soc., 113, 603–633.

    Article  Google Scholar 

  • Shiotani, M., and I. Hirota, 1985: Planetary wave-mean flow interaction in the stratosphere: A comparison between Northern and Southern Hemispheres. Quart. J. Roy. Meteor. Soc., 111, 309–334.

    Article  Google Scholar 

  • Shiotani, M., K. Kuroi, and I. Hirota, 1990: Eastward traveling waves in the Southern Hemisphere stratosphere during the spring of 1983. Quart. J. Roy. Meteor. Soc., 116, 913–927.

    Article  Google Scholar 

  • Shiotani, M., N. Shimoda, and I. Hirota, 1993: Interannual variability of the stratospheric circulation in the Southern Hemisphere. Quart. J. Roy. Meteor. Soc., 119, 531–546.

    Article  Google Scholar 

  • Solomon, S., 1988: The mystery of the antarctic ozone “hole.” Rev. Geophys., 26, 131–148.

    Article  Google Scholar 

  • Solomon, S., 1990: Progress towards a quantitative understanding of antarctic ozone depletion. Nature, 347, 347–354.

    Article  Google Scholar 

  • Solomon, S., R. R. Garcia, F. S. Rowland, and D. J. Wuebbles, 1986a: On the depletion of antarctic ozone. Nature, 321, 755–758.

    Article  Google Scholar 

  • Solomon, S., J. T. Kiehl, R. R. Garcia, and W. Grose, 1986b: Tracer transport by the diabatic circulation deduced from satellite observations. J. Atmos. Sci., 43, 1603–1617.

    Article  Google Scholar 

  • Stanford, J. L., and J. S. Davis, 1974: A century of stratospheric cloud reports: 1870–1972. Bull. Amer. Meteor. Soc., 55, 213–219.

    Article  Google Scholar 

  • Stanford, J. L., J. R. Ziemke, and S. Y. Gao, 1993: Stratospheric circulation features deduced from SAMS constituent data. J. Atmos. Sci., 50, 226–246.

    Article  Google Scholar 

  • Stolarski, R. S., A. J. Krueger, M. R. Schoeberl, R. D. McPeters, P. A. Newman, and J. C. Alpert, 1986: Nimbus 7 satellite measurements of the springtime antarctic ozone decrease. Nature, 322, 808–811.

    Google Scholar 

  • Stolarski, R. S., P. Bloomfield, R. McPeters, and J. Herman, 1991: Total ozone trends deduced from Nimbus 7 TOMS data. Geophys. Res. Lett., 18, 1015–1018.

    Article  Google Scholar 

  • Stolarski, R. S., R. Bojkov, L. Bishop, C. Zerefos, J. Staehelin, and J. Zawodny, 1992: Measured trends in stratospheric ozone. Science, 256, 342–349.

    Article  Google Scholar 

  • Sutton, R., 1994: Lagrangian flow in the middle atmosphere. Quart. J. Roy. Meteor. Soc., 120, 1299–1321.

    Article  Google Scholar 

  • Swinbank, R., and A. O’Neill, 1994: A stratosphere-troposphere data-assimilation system. Mon. Wea. Rev., 122, 686–702.

    Article  Google Scholar 

  • Sze, N. D. 1989: Antarctic ozone hole: Possible implications for ozone trends in the Southern Hemisphere. J. Geophys. Res. 94 11 521–11 528.

    Google Scholar 

  • Thuburn, J., and G. C. Craig, 1997: GCM tests of theories for the height of the tropopause. J. Atmos. Sci., 54, 869–882.

    Article  Google Scholar 

  • Trenberth, K. E., and J. G. Olson, 1989: Temperature trends at the South Pole and McMurdo Sound. J. Climate, 2, 1196–1206.

    Article  Google Scholar 

  • Tuck, A. F., J. M. Russell III, and J. E. Harries, 1993: Stratospheric dryness: Antiphased dessication over Micronesia and Antarctica. Geophys. Res. Lett., 20, 1227–1230.

    Article  Google Scholar 

  • Tung, K. K., and H. Yang, 1994: Global QBO in circulation and ozone. Part I: Reexamination of observational evidence. J. Atmos. Sci., 51, 2699–2707.

    Article  Google Scholar 

  • van Loon, H., and K. Labitzke, 1987: The Southern Oscillation. Part V: The anomalies in the lower stratosphere of the Northern Hemisphere in winter and a comparison with the quasi-biennial oscillation. Mon. Wea. Rev., 115, 357–369.

    Article  Google Scholar 

  • Venne, D. E., 1989: Normal-mode Rossby waves observed in the wavenumber 1–5 geopotential fields of the stratosphere and troposphere. J. Atmos. Sci., 46, 1042–1056.

    Article  Google Scholar 

  • Venne, D. E., and J. L. Stanford, 1979: Observation of a 4-day tempera-ture wave in the polar winter stratosphere. J. Atmos. Sci., 36, 2016–2019.

    Article  Google Scholar 

  • Venne, D. E., and, 1982: An observational study of high-latitude stratospheric planetary waves in winter. J. Atmos. Sci., 39, 1026–1034.

    Google Scholar 

  • Waters, J. W., L. Froidevaux, W. G. Read, G. L. Manney, L. S. Elson, D. A. Flower, R. F. Jarnot, and R. S. Harwood, 1993: Stratospheric CIO and ozone from the microwave limb sounder on the Upper Atmosphere Research Satellite. Nature, 362, 597–602.

    Article  Google Scholar 

  • Waugh, D. W., 1993a: Contour surgery simulation of a forced polar vortex. J. Atmos. Sci., 50, 714–730.

    Article  Google Scholar 

  • Waugh, D. W., 19936: Subtropical stratospheric mixing linked to distur-bances in the polar vortices. Nature, 365, 535–537.

    Google Scholar 

  • Waugh, D. W., and W. J. Randel, 1998: Climatology of arctic and Antarctic polar vortices using elliptical diagnostics. J. Atmos. Sci. in press. Webster, G. R., and Coauthors, 1993: Chlorine chemistry on polar stratospheric cloud particles in the arctic winter. Science 261 1130–1134.

    Google Scholar 

  • WMO, 1992: Scientific assessment of ozone depletion: 1991. Global Ozone Research and Monitoring Project, World Meteorological Organization Rep. No. 25.

    Google Scholar 

  • WMO, 1995: Scientific assessment of ozone depletion: 1994. Global Ozone Research and Monitoring Project, World Meteorological Organization Rep. No. 37.

    Google Scholar 

  • Wu, D. L., P. B. Hays, W. R. Skinner, A. R. Marshall, M. D. Burrage, R. S. Lieberman, and D. A. Ortland, 1993: Observations of the quasi 2-day wave from the high resolution Doppler imager on UARS. Geophys. Res. Lett., 20, 1853–2856.

    Article  Google Scholar 

  • Wu, E. F. Fishbein, W. G. Read, and J. W. Waters, 1996: Excitation and evolution of the quasi-2-day wave observed in UARS/MLS temperature measurements. J. Atmos. Sci., 51, 728–738.

    Article  Google Scholar 

  • Yang, H., and K. K. Tung, 1994: Statistical significants and pattern of extratropical QBO in column ozone. Geophys. Res. Lett., 21, 2235–2238.

    Article  Google Scholar 

  • Yulaeva, E., J. R. Holton, and J. M. Wallace, 1994: On the cause of the annual cycle in the tropical lower stratospheric temperature. J. Atmos. Sci., 51, 169–174.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 American Meteorological Society

About this chapter

Cite this chapter

Randel, W.J., Newman, P.A. (1998). The Stratosphere in the Southern Hemisphere. In: Karoly, D.J., Vincent, D.G. (eds) Meteorology of the Southern Hemisphere. Meteorological Monographs. American Meteorological Society, Boston, MA. https://doi.org/10.1007/978-1-935704-10-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-935704-10-2_9

  • Publisher Name: American Meteorological Society, Boston, MA

  • Online ISBN: 978-1-935704-10-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics