Skip to main content

Part of the book series: Meteorological Monographs ((METEOR))

  • 573 Accesses

Abstract

The purpose of this chapter is to describe current Southern Hemisphere climate model simulation capabilities in terms of seasonal mean quantities, the annual cycle, interannual and longer timescale variability, and possible future climate change. Climate modeling is defined here to include global climate simulations with general circulation models. Since the timescales will include monthly to seasonal to interannual to interdecadal and longer, the subject matter of this chapter is distinct from numerical weather prediction studies on shorter-than-monthly timescales. The climate models covered in this chapter involve spatial resolutions from about 2° × 2° to 5° × 5°. A number of the climate model results in this chapter will include some type of interactive ocean surface as well as specified SST experiments.

Portions of this manuscript were supported by the Office of Health and Environmental Research of the U.S. Department of Energy as part of its Carbon Dioxide Research Program.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Barnett, T. P., B. D. Santer, P. D. Jones, R. S. Bradley, and K. R. Briffa, 1996: Estimates of low-frequency natural variability in near-surface air temperature. Holocene, 6, 255–263.

    Article  Google Scholar 

  • Bates, G. T., and G. A. Meehl, 1986: The effect of CO2 concentration on the frequency of blocking in a general circulation model coupled to a simple mixed-layer ocean model. Mon. Wea. Rev., 114, 687–701.

    Article  Google Scholar 

  • Bjerknes, J., 1964: Atlantic air-sea interaction. Advances in Geophysics. Academic Press, 1–82.

    Google Scholar 

  • Blackmon, M. L., J. E. Geisler, and E. J. Pitcher, 1983: A general circulation model study of January climate anomaly patterns associated with interannual variation of equatorial Pacific sea surface temperatures. J. Atmos. Sci., 40, 1410–1425.

    Article  Google Scholar 

  • Boer, G. J., and Coauthors, 1992: Some results from an intercomparison of the climates simulated by 14 atmospheric general circulation models. J. Geophys. Res., 97, 12 771–12 786.

    Google Scholar 

  • Boville, B. B., 1991: Sensitivity of simulated climate to model resolution. J. Climate, 4, 469–485.

    Article  Google Scholar 

  • Bromwich, D. H., B. Chen, and X. Pan, 1995: Intercomparison of simulated polar climates by global climate models. Preprints, Fourth Conf. on Polar Meteorology and Oceanography, Dallas, TX, Amer. Meteor. Soc., (J9)14-(J9)19.

    Google Scholar 

  • Bryan, K., and R. Stouffer, 1991: A note on Bjerknes’ hypothesis for North Atlantic variability. J. Mar. Sys., 1, 229–241.

    Article  Google Scholar 

  • Burgos, J. J., H. F. Ponce, and L. C. B. Molion, 1991: Climate change predictions for South America. Clint Change, 18, 223–239.

    Article  Google Scholar 

  • Chen, B., and D. H. Bromwich, 1995: High latitude pressure patterns simulated by global climate models. Proc. First Int. AMIP Scientific Conf, WCRP-92, WMO/TD-No. 732, World Climate Research Programme, 439–444.

    Google Scholar 

  • Colman, R., S. Power, B. McAvaney, and R. Dahni, 1995: A non-flux-corrected transient CO2 experiment using the BMRC coupled A/OGCM. Geophys. Res. Lett., 22, 3047–3050.

    Article  Google Scholar 

  • England, M. H., 1995: Using chlorofluorocarbons to assess ocean climate models. Geophys. Res. Lett., 22, 3051–3054.

    Article  Google Scholar 

  • Evans, J., 1993: Sensitivity of tropical cyclone intensity to sea surface temperature. J. Climate, 6, 1133–1140.

    Article  Google Scholar 

  • Fennessy, M. J., L. Marx, and J. Shukla, 1985: General circulation model sensitivity to 1982–83 equatorial Pacific sea surface temperature anomalies. Mon. Wea. Rev., 113, 858–864.

    Article  Google Scholar 

  • Frederiksen, C. S., P. Indusekaran, R. Balgovind, D. P. Rowell, and C. K. Folland, 1995: Simulations of Australian climate variability: The role of global SSTs. Proc. First Int. AMIP Scientific Conf., WCRP-92, WMO/TD-No. 732, World Climate Research Programme, 413–418.

    Google Scholar 

  • Gates, W. L., 1992: AMIP: The atmospheric model intercomparison project. Bull. Amer. Meteor. Soc., 73, 1962–1970.

    Article  Google Scholar 

  • Gates, W. L., Ed., 1995: Proc. First Int. AMIP Scientific Conf., WCRP-92, WMO/TD-No. 732, World Climate Research Programme, 529 pp.

    Google Scholar 

  • Gibson, R., P. Kallberg, and S. Uppala, 1996: The ECMWF Re-analysis (ERA) Project. ECMWF Newsletter, 73, 7–17.

    Google Scholar 

  • Gordon, H. B., and B. G. Hunt, 1994: Climatic variability within an equilibrium greenhouse simulation. Climate Dyn., 9, 195–212.

    Article  Google Scholar 

  • Gordon, H. B., P. H. Whetton, A. B. Pittock, A. M. Fowler, and M. R. Haylock, 1992: Simulated changes in daily rainfall intensity due to the enhanced greenhouse effect: Implications for ex-treme rainfall events. Climate Dyn., 8, 83–102.

    Article  Google Scholar 

  • Hurrell, J. W., and H. van Loon, 1994: A modulation of the atmospheric annual cycle in the Southern Hemisphere. Tellus, 46A, 325–338.

    Article  Google Scholar 

  • IPCC, 1990: Climate Change: The IPCC Scientific Assessment. J. T. Houghton, G. J. Jenkins, and J. J. Ephraums, Eds., Cambridge University Press, 366 pp.

    Google Scholar 

  • IPCC, 1992: Climate Change 1992: The Supplementary Report to the IPCC Scientific Assessment. J. T. Houghton, B. A. Callander, and S. K. Varney, Eds., Cambridge University Press, 200 pp.

    Google Scholar 

  • IPCC, 1996: Climate Change 1995: The Science of Climate Change. J. T. Houghton, L. G. Meira Filho, B. A. Callander, N. Harris, A. Kattenberg, and K. Maskell, Eds., Cambridge University Press, 572 pp.

    Google Scholar 

  • Jones, D. A., and I. Simmonds, 1993: A climatology of Southern Hemisphere extratropical cyclones. Climate Dyn., 9, 131–145.

    Article  Google Scholar 

  • Joubert, A., 1994: Simulations of southern African climate by early-generation general circulation models. Water S. A., 20, 315–322.

    Google Scholar 

  • Joubert, A., 1995: Simulations of southern African climate by early generation general circulation models. S. African J. Sci., 91, 85–91.

    Google Scholar 

  • Joubert, A., 1997: AMIP simulations of atmospheric circulation over southern Africa. Int. J. Climatol., 17, 1129–1154.

    Article  Google Scholar 

  • Joubert, A., and S. J. Mason, 1996: Droughts over southern Africa in a doubled-CO2 climate. Int. J. Climatol., 16, 1149–1156.

    Article  Google Scholar 

  • Joubert, A., and P. D. Tyson, 1996: Equilibrium and fully-coupled GCM simulations of future southern African climates. S. African J. Sci., 92, 471–484.

    Google Scholar 

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437–471.

    Article  Google Scholar 

  • Karoly, D. J., 1989: Southern Hemisphere circulation features associated with El Nino-Southern Oscillation events. J. Climate, 2, 1239–1252.

    Article  Google Scholar 

  • Karoly, D. J., R. A. Plumb, and M. Ting, 1989: Examples of the horizon-tal propagation of quasi-stationary waves. J. Atmos. Sci., 46, 2802–2811.

    Article  Google Scholar 

  • Karoly, D. J., J. A. Cohen, G. A. Meehl, J. F. B. Mitchell, A. H. Oort, R. J. Stouffer, and R. T. Wetherald, 1994: An example of fingerprint detection of greenhouse climate change. Climate Dyn., 10, 97–105.

    Article  Google Scholar 

  • Karoly, D. J., P. C. McIntosh, P. Berrisford, T. J. McDougall, and A. C. Hirst, 1997: Similarities of the Deacon cell in the Southern Ocean and the Ferrel cells in the atmosphere. Quart. J. Roy. Meteor. Soc., 123, 519–526.

    Article  Google Scholar 

  • Kiladis, G. N., and H. van Loon, 1988: The Southern Oscillation. Part VII: Meteorological anomalies over the Indian and Pacific sectors associated with the extremes of the oscillation. Mon. Wea. Rev., 116, 120–136.

    Article  Google Scholar 

  • Karoly, D. J., H. von Storch, and H. van Loon, 1989: Origin of the South Pacific convergence zone. J. Climate, 2, 1185–1195.

    Article  Google Scholar 

  • Kinter, J. L. III, J. Shukla, L. Marx, and E. K. Schneider, 1988: A simulation of the winter and summer circulations with the NMC global spectral model. J. Atmos. Sci., 45, 2486–2522.

    Article  Google Scholar 

  • Kitoh, A., 1994: Tropical influence on the South Pacific double jet variability. Proc. NIPR Symp. Polar Meteorol. Glaciol., 8, 34–45.

    Google Scholar 

  • Kitoh, A., K. Yamazaki, and T. Tokioka, 1990: The double jet and semi-annual oscillations in the Southern Hemisphere simulated by the Meteorological Research Institute general circulation model. J. Meteor. Soc. Japan, 68, 251–264.

    Google Scholar 

  • Knutson, T. R., and S. Manabe, 1994: Impact of increased CO2 on simulated ENSO-like phenomena. Geophys. Res. Lett., 21, 2295–2298.

    Article  Google Scholar 

  • Knutson, T. R., and, 1995: Time-mean response over the tropical Pacific due to increased CO2 in a coupled ocean-atmosphere model. J. Climate, 8, 2181–2199.

    Google Scholar 

  • Lau, N.-C., 1985: Modeling the seasonal dependence of the atmo spheric response to observed El Niflos in 1962–76. Mon. Wea. Rev., 113, 1970–1996.

    Article  Google Scholar 

  • Lau, N.-C., S. G. H. Philander, and M. J. Nath, 1992: Simulation of ENSO-like phenomena with a low-resolution coupled GCM of the global ocean and atmosphere. J. Climate, 5, 284–307.

    Article  Google Scholar 

  • Liang, X.-L., W.-C. Wang, and M. P. Dudek, 1995: Interannual climate variability and its change due to the greenhouse effect. Global Planet. Change, 10, 217–238.

    Article  Google Scholar 

  • Lighthill, J., G. Holland, W. Gray, C. Landsea, G. Craig, J. Evans, Y. Kurihara, and C. Guard, 1994: Global climate change and tropical cyclones. Bull. Amer. Meteor. Soc., 75, 2147–2157.

    Google Scholar 

  • Lindesay, J. A., and I. Smith, 1993: Modelling southern African rainfall responses to SST anomalies in the South Atlantic and Indian Oceans. Preprints, Fourth Int. Conf. on Southern Hemi sphere Meteorology and Oceanography, Hobart, Australia, Amer. Meteor. Soc., 526–527.

    Google Scholar 

  • Manabe, S., and R. J. Stouffer, 1988: Two stable equilibria of a coupled ocean-atmosphere model. J. Climate, 1, 841–866.

    Article  Google Scholar 

  • Manabe, S., and, 1996: Low-frequency variability of surface air temperature in a 1000-year integration of a coupled ocean-atmosphere model. J. Climate, 9, 376–393.

    Google Scholar 

  • Manabe, S., M. J. Spelman, and K. Bryan, 1991: Transient responses of a coupled ocean-atmosphere model to gradual changes of atmospheric CO2. Part I: Annual mean response. J. Climate, 4, 785–818.

    Article  Google Scholar 

  • Manabe, S., M. J. Spelman, and R. J. Stouffer, 1992: Transient re-sponses of a coupled ocean-atmosphere model to gradual changes of atmospheric CO2. Part II: Seasonal response. J. Climate, 5, 105–126.

    Article  Google Scholar 

  • Mason, S. J., and A. M. Joubert, 1997: Simulated changes in extreme rainfall over southern Africa. Int. J. Climatol., 17, 291–301.

    Article  Google Scholar 

  • McGregor, J. L., and K. Walsh, 1994: Climate change simulations of Tasmanian precipitation using multiple nesting. J. Geophys. Res., 99, 20 889–20 905.

    Google Scholar 

  • McGregor, J. L., and J. J. Katzfey, 1993: Nested modelling for regional climate studies. Modelling Change in Environmental Systems, A. J. Jakeman, M. B. Beck, and M. J. McAleer, Eds., John Wiley and Sons, 367–386.

    Google Scholar 

  • Mearns, L. O., 1993: Implications of global warming for climate variability and the occurrence of extreme climate events. Drought Assessment Management and Planning: Theory and Case Studies, D. A. Wilhite, Eds., Kluwer, 109–130.

    Google Scholar 

  • Mechoso, C., 1981: Topographic influences on the general circulation of the Southern Hemisphere: A numerical experiment. Mon. Wea. Rev., 109, 2131–2139.

    Article  Google Scholar 

  • Meehl, G. A., 1987: The annual cycle and interannual variability in the tropical Indian and Pacific Ocean regions. Mon. Wea. Rev., 115, 27–50.

    Article  Google Scholar 

  • Meehl, G. A., 1989: The coupled ocean-atmosphere modeling problem in the tropical Pacific and Asian monsoon regions. J. Climate, 2, 1146–1163.

    Article  Google Scholar 

  • Meehl, G. A., 1990a: Development of global coupled ocean-atmosphere general circulation models. Climate Dyn., 5, 19–33.

    Article  Google Scholar 

  • Meehl, G. A., 1990b: Seasonal cycle forcing of El Nino-Southern Oscil-lation in a global coupled ocean-atmosphere GCM. J. Climate, 3, 72–98.

    Article  Google Scholar 

  • Meehl, G. A., 1991: A reexamination of the mechanism of the semiannual oscillation in the Southern Hemisphere. J. Climate, 4, 911–926.

    Article  Google Scholar 

  • Meehl, G. A., 1992: Global coupled models: Atmosphere, ocean, sea ice. Climate System Modeling, K. Trenberth, Ed., Cambridge University Press, 555–581.

    Google Scholar 

  • Meehl, G. A., 1994: Coupled land-ocean-atmosphere processes and south Asian monsoon variability. Science, 266, 263–267.

    Article  Google Scholar 

  • Meehl, G. A., 1995: Global coupled general circulation models. Bull. Amer. Meteor. Soc., 76, 951–957.

    Google Scholar 

  • Meehl, G. A., 1996: Vulnerability of fresh water resources to climate change in the tropical Pacific region. J. Water Air Soil Poll., 92, 203–213.

    Google Scholar 

  • Meehl, G. A., 1997a: The south Asian monsoon and the tropospheric biennial oscillation. J. Climate, 10, 1921–1943.

    Article  Google Scholar 

  • Meehl, G. A., 1997b: Modification of surface fluxes in component models in global coupled models. Climate Dyn., 14, 1–15.

    Article  Google Scholar 

  • Meehl, G. A., and B. A. Albrecht, 1988: Tropospheric temperatures and South-ern Hemisphere circulation. Mon. Wea. Rev., 116, 953–960.

    Article  Google Scholar 

  • Meehl, G. A., and W. M. Washington, 1990: CO2 climate sensitivity and snow-sea-ice albedo parameterization in an atmospheric GCM coupled to a mixed-layer ocean model. Clim. Change, 16, 283–306.

    Article  Google Scholar 

  • Meehl, G. A., and, 1991: Response of a GCM with a hybrid convection scheme to a tropical Pacific sea surface temperature anomaly. J. Climate, 4, 672–688.

    Google Scholar 

  • Meehl, G. A., and, 1995: Cloud albedo feedback and the super greenhouse effect in a global coupled GCM. Climate Dyn., 11, 399–411.

    Google Scholar 

  • Meehl, G. A., and, 1996: El Niflo-like climate change in a model with increased atmospheric CO2 concentrations. Nature, 382, 56–60.

    Google Scholar 

  • Meehl, G. A., G. W. Branstator, and W. M. Washington, 1993a: Tropical Pacific interannual variability and CO2 climate change. J. Climate, 6, 42–63.

    Article  Google Scholar 

  • Meehl, G. A., W. M. Washington, and T. R. Karl, 1993b: Low-frequency variability and CO2 transient climate change. Part 1: Time-averaged differences. Climate Dyn., 8, 117–133.

    Article  Google Scholar 

  • Meehl, G. A., M. Wheeler, and W. M. Washington, 1994: Low-frequency variability and CO2 transient climate change. Part 3. Intermonthly and interannual variability. Climate Dyn., 10, 277–303.

    Article  Google Scholar 

  • Meehl, G. A., G. J. Boer, C. Covey, M. Latif, and R. J. Stouffer, 1997: Intercomparison makes for a better climate model. Eos, 78, 445–446, 451.

    Google Scholar 

  • Meehl, G. A., J. W. Hurrell, and H. van Loon, 1998: A modulation of the mechanism of the semiannual oscillation in the Southern Hemisphere. Tellus, 50A, 442–450.

    Article  Google Scholar 

  • Mullan, A. B., and B. J. McAvaney, 1995: Validation of high latitude tropospheric circulation in the Southern Hemisphere (Subproject 9). Proc. First Int. AMIP Scientific Conf, WCRP-92, WMOfID-No. 732, World Climate Research Programme, 205–210.

    Google Scholar 

  • Murphy, J. M., 1995: Transient response of the Hadley Centre coupled ocean-atmosphere model to increasing carbon dioxide. Part I: Control climate and flux correction. J. Climate, 8, 36–56.

    Article  Google Scholar 

  • Nagai, T., T. Tokioka, M. Endoh, and Y. Kitamura, 1992: El Nino/Southern Oscillation simulated in an MRI atmosphere-ocean coupled general circulation model. J. Climate, 5, 1202–1233.

    Article  Google Scholar 

  • Neelin, J. D., and H. A. Dijkstra, 1995: Ocean-atmospheric interaction and the tropical climatology. Part I: The dangers of flux-correction. J. Climate, 8, 1325–1342.

    Article  Google Scholar 

  • Neelin, J. D., and Coauthors, 1992: Tropical air-sea interaction in general circulation models. Climate Dyn., 7, 73–104.

    Article  Google Scholar 

  • Nicholls, N., 1991: Global warming, tropical cyclones, and ENSO. Responding to the Threat of Global Warming, ANL/EAIS/TM17, Argonne National Laboratory, 2–19–2–36.

    Google Scholar 

  • Palmer, T N., and D. A. Mansfield, 1986a: A study of wintertime circulation anomalies during past El Nino events using a higher resolution general circulation model. I: Influence of a model climatology. Quart. J. Roy. Meteor. Soc., 112, 613–638.

    Article  Google Scholar 

  • Palmer, T N., and, 1986b: A study of wintertime circulation anomalies during past El Nino events using a higher resolution general circulation model. II: Variability of the seasonal mean response. Quart. J. Roy. Meteor. Soc., 112, 639–660.

    Google Scholar 

  • Parrish, T. R., D. H. Bromwich, and R.-Y. Tzeng, 1994: On the role of the Antarctic continent in forcing large-scale circulations in the high southern latitudes. J. Atmos. Sci., 51, 3566–3579.

    Article  Google Scholar 

  • Pittock, A. B., A. M. Fowler, and P. H. Whetton, 1991: Probable changes in rainfall regimes due to the enhanced greenhouse effect. Proc. Int. Hydrology and Water Resources Symp., Perth, Australia.

    Google Scholar 

  • Rind, D., R. Goldberg, and R. Reudy, 1989: Change in climate variability in the 21st century. Clim. Change, 14, 5–37.

    Article  Google Scholar 

  • Rowntree, P. R., 1972: The influence of tropical east Pacific Ocean temperature on the atmosphere. Quart. J. Roy. Meteor. Soc., 98, 290–321.

    Article  Google Scholar 

  • Ryan, B. F., D. A. Jones, and H. B. Gordon, 1992: The sensitivity of GCM models to the Australian monsoon equatorial shear line: Enhanced greenhouse scenario implications. Climate Dyn., 7, 173–180.

    Article  Google Scholar 

  • Schlesinger, M. E., 1984: Atmospheric general circulation model simulations of the modern Antarctic climate. Environment of West Antarctica: Potential CO 2 -Induced Changes, National Academy Press, 155–196.

    Google Scholar 

  • Shukla, J., and J. M. Wallace, 1983: Numerical simulation of the atmospheric response to equatorial Pacific SST anomalies. J. Atmos. Sci., 40, 1613–1630.

    Article  Google Scholar 

  • Simmonds, I., 1990a: A modelling study of winter circulation and precipitation anomalies associated with Australian region ocean temperatures. Aust. Meteor. Mag., 38, 151–161.

    Google Scholar 

  • Simmonds, I., 1990b: Improvements in general circulation model performance in simulating antarctic climate. Antarctic Sci., 2, 287–300.

    Article  Google Scholar 

  • Simmonds, I., and W. F. Budd, 1991: Sensitivity of the Southern Hemisphere circulation to leads in antarctic pack ice. Quart. J. Roy. Meteor. Soc., 117, 1003–1024.

    Article  Google Scholar 

  • Simmonds, I., and X. Wu, 1993: Cyclone behaviour response to changes in winter Southern Hemisphere sea-ice concentration. Quart. J. Roy. Meteor. Soc., 119, 1121–1148.

    Article  Google Scholar 

  • Simmonds, I., G. Trigg, and R. Law, 1988: The Climatology of the Melbourne University General Circulation Model. University of Melbourne, Australia, Pub. No. 31, NTIS PB 88 227491, 62 pp.

    Google Scholar 

  • Smith, I. N., M. Dix, and R. J. Allan, 1997: The effect of greenhouse SSTs on ENSO simulations with an AGCM. J. Climate, 10, 342–352.

    Article  Google Scholar 

  • Sperber, K. R., S. Hameed, W. L. Gates, and G. L. Potter, 1987: Southern Oscillation simulated in a global climate model. Nature, 329, 140–142.

    Article  Google Scholar 

  • Stouffer, R. J., S. Manabe, and K. Bryan, 1989: Interhemispheric asymmetry in climate response to a gradual increase of atmospheric CO2. Nature, 342, 660–662.

    Article  Google Scholar 

  • Stouffer, R. J., and K. Ya. Vinnikov, 1994: Model assessment of the role of natural variability in recent global warming. Nature, 367, 634–636.

    Article  Google Scholar 

  • Swanson, G. S., and K. E. Trenberth, 1982: Persistent anomaly statistics in the Southern Hemisphere. Proc. Seventh Annual Climate Diagnostics Workshop, Boulder, CO, National Oceanographic and Atmospheric Administration, 118–125.

    Google Scholar 

  • Tett, S., 1995: Simulation of El Nino/Southern Oscillation-like variability in a global AOGCM and its response to CO2 increase. J. Climate, 8, 1473–1502.

    Article  Google Scholar 

  • Tokioka, T., A. Noda, A. Kitoh, Y. Nidaidou, S. Nakagawa, T. Motoi, and S. Yukimoto, 1995: A transient CO2 experiment with the MRI CGCM—Quick report. J. Meteor. Soc. Japan, 73, 817–826.

    Google Scholar 

  • Trenberth, K. E., 1986: The signature of a blocking episode on the general circulation in the Southern Hemisphere. J. Atmos. Sci., 43, 2061–2069.

    Article  Google Scholar 

  • Trenberth, K. E., and K. C. Mo., 1985: Blocking in the Southern Hemisphere. Mon. Wea. Rev., 113, 3–21.

    Article  Google Scholar 

  • van Loon, H., 1967: The half-yearly oscillation in middle and high southern latitudes and the coreless winter. J. Atmos. Sci., 24, 472–486.

    Article  Google Scholar 

  • van Loon, H., 1986: The characteristics of sea level pressure and sea surface temperature during the development of a warm event in the Southern Oscillation. Namias Symposium, Scripps Institution of Oceanography Reference Series 86–17, J. O. Roads, Ed., Scripps Institution of Oceanography, 160–173.

    Google Scholar 

  • von Storch, J.-S., 1994: Interdecadal variability in a global coupled model. Tellus, 46A, 419–432.

    Article  Google Scholar 

  • Walsh, K., and J. L. McGregor, 1995: January and July climate simulations over the Australian region using a limited-area model. J. Climate, 8, 2387–2403.

    Article  Google Scholar 

  • Washington, W. M., and G. A. Meehl, 1989: Climate sensitivity due to increased CO2: Experiments with a coupled atmosphere and ocean general circulation model. Climate Dyn., 4, 1–38.

    Article  Google Scholar 

  • Washington, W. M., and, 1996: High-latitude climate change in a global coupled ocean-atmosphere-sea ice model with increased atmospheric CO2. J. Geophys. Res., 101, 12 795–12 801.

    Google Scholar 

  • Whetton, P. H., 1997: Comment on “Global and terrestrial precipitation: A comparative assessment of existing climatologies” by D. R. Legates. Int. J. Climatol., 17, 163–170.

    Article  Google Scholar 

  • Whetton, P. H., A. M. Fowler, M. R. Haylock, and A. B. Pittock, 1993: Implications of climate change due to the enhanced greenhouse effect on floods and droughts in Australia. Clim. Change, 25, 289–317.

    Article  Google Scholar 

  • Whetton, P. H., P. J. Rayner, A. B. Pittock, and M. R. Haylock, 1994: An assessment of possible climate change in the Australian region based on an intercomparison of general circulation modeling results. J. Climate, 7, 441–463.

    Article  Google Scholar 

  • Whetton, P. H., M. England, S. O’Farrell, I. Watterson, and B. Pittock, 1996a: Global comparison of the regional rainfall results of enhanced greenhouse coupled and mixed layer ocean experiments: Implications for climate change scenario development. Clim. Change, 33, 497–519.

    Article  Google Scholar 

  • Whetton, P. H., A. B. Mullan, and A. B. Pittock, 1996b: Climate change scenarios for Australia and New Zealand. Greenhouse: Coping with Climate Change, W. J. Bouma, G. I. Pearman, and M. R. Manning, Eds., CSIRO, 145–168.

    Google Scholar 

  • Whetton, P. H., A. B. Pittock, J. C. Labraga, A. B. Mullan, and A. Joubert, 1996c: Southern Hemisphere climate: Comparing models with reality. Climate Change, People and Policy: Developing Southern Hemisphere Perspectives, T. Giambelluca and A. Henderson-Sellers, Eds., John Wiley and Sons, 89–130.

    Google Scholar 

  • Xu, J.-S., H. von Storch, and H. van Loon, 1990: The performance of four spectral GCMs in the Southern Hemisphere: The January and July climatology and the semiannual wave. J. Climate, 3, 53–70.

    Article  Google Scholar 

  • Yang, S., and W. J. Gutowski Jr., 1994: GCM simulations of the three-dimensional propagation of stationary waves. J. Climate, 7, 414–433.

    Article  Google Scholar 

  • Zebiak, S. E., and M. A. Cane, 1987: A model El Nino-Southern Oscillation. Mon. Wea. Rev., 115, 2262–2278.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 American Meteorological Society

About this chapter

Cite this chapter

Meehl, G.A. (1998). Climate Modeling. In: Karoly, D.J., Vincent, D.G. (eds) Meteorology of the Southern Hemisphere. Meteorological Monographs. American Meteorological Society, Boston, MA. https://doi.org/10.1007/978-1-935704-10-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-935704-10-2_13

  • Publisher Name: American Meteorological Society, Boston, MA

  • Online ISBN: 978-1-935704-10-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics