Skip to main content

Numerical Modeling of Severe Local Storms

  • Chapter
Severe Convective Storms

Part of the book series: Meteorological Monographs ((METEOR))

Abstract

Numerical modeling of clouds is as old as computers capable of solving discrete versions of the fundamental dynamical equations. With the limited memories and computer power available in the 1960s and 1970s, most modelers employed two-dimensional slab or axisymmetric approximations to study convective dynamics (e.g., Lilly 1962; Ogura and Charney 1962; Orville 1968; Takeda 1971; Wilhelmson and Ogura 1972; Hane 1973; Soong and Ogura 1973; Schlesinger 1973; Soong 1974). The slab models represented the convective growth of infinitely long convective bands forming in environments with or without vertical wind shear, while the axisymmetric simulations were constrained to shearless environments. However, as computer power grew and vector computers were developed (e.g., the CRAY 7600 and the succeeding CRAY computers; Kaufmann and Smarr 1993), it became possible to solve the three-dimensional equations of motion on relatively coarse-mesh grids (e.g., Steiner 1973; Deardorff 1972; Wilhelmson 1974; Schlesinger 1975; Klemp and Wilhelmson 1978b).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achtemeier, G. L., 1969: Some observations of splitting thunderstorms over Iowa on August 25–26, 1965. Preprints, Sixth Conf. on Severe Local Storms, Chicago, IL, Amer. Meteor. Soc., 89–94.

    Google Scholar 

  • Adams, J., R. Garcia, B. Gross, J. Hack, D. Haidvogel, and V. Pizzo, 1992: Applications of multigrid software in the atmospheric sciences. Mon. Wea. Rev., 120, 1447–1458.

    Article  Google Scholar 

  • Adlerman, E. J., K. K. Droegemeier, and R. Davies-Jones, 1999: A numerical simulation of cyclic mesocyclogenesis. J. Atmos. Sci., 56, 2045–2069.

    Article  Google Scholar 

  • Atkins, N. T., M. L. Weisman, and L. J. Wicker, 1999: The influence of preexisting boundaries on supercell evolution. Mon. Wea. Rev., 127, 2910–2927.

    Article  Google Scholar 

  • Benoit, R., M. Desgagne, P. Pellerin, S. Pellerin, and Y. Chartier, 1997: The Canadian MC2: A semi-Lagrangian, semi-implicit wideband atmospheric model suited for finescape process studies and simulation. Mon. Wea. Rev., 125, 2382–2415.

    Article  Google Scholar 

  • Bernardet, L. R., and W. R. Cotton, 1998: Multiscale evolution of a derecho-producing mesoscale convective system. Mon. Wea. Rev., 126, 2991–3015.

    Article  Google Scholar 

  • Bluestein, H. B., and G. R. Woodall, 1990: Doppler radar analysis of a low-precipitation severe storm. Mon. Wea. Rev., 118, 1640–1664.

    Article  Google Scholar 

  • Brady, R. H., and E. J. Szoke, 1989: A case study of non-mesocyclone tornado development in northeast Colorado: Similarities to waterspout formation. Mon. Wea. Rev., 117, 843–856.

    Article  Google Scholar 

  • Brooks, H. E., and R. B. Wilhelmson, 1992: Numerical simulation of a low-precipitation supercell thunderstorm. Meteor. Atmos. Phys., 49, 3–17.

    Article  Google Scholar 

  • Brooks, H. E., D. J. Stensrud, and J. V. Cortinas Jr., 1993a: The use of mesoscale models to initialize cloud-scale models for convective forecasting. Preprints, 13th Conf. on Weather Analysis and Forecasting, Vienna, VA, Amer. Meteor. Soc., 301–304.

    Google Scholar 

  • Brooks, H. E., L. J. Wicker, and C. A. Doswell III, 1993b: STORMTIPE: A forecasting experiment using a three-dimensional cloud model. Wea. Forecasting, 8, 352–362.

    Article  Google Scholar 

  • Brooks, H. E., C. A. Doswell III, and J. Cooper, 1994: On the environ-ments of tornadic and nontornadic mesocyclones. Wea. Forecasting, 9, 606–618.

    Article  Google Scholar 

  • Brown, R. A., Ed., 1976: The Union City, Oklahoma tornado of 24 May 19973. NOAA Tech. Memo. ERL NSSL-80, National Severe Storms Laboratory, Norman, OK.

    Google Scholar 

  • Browning, K. A., 1964: Airflow and precipitation trajectories within severe local storms which travel to the right of the winds. J. Atmos. Sci., 21, 634–639.

    Article  Google Scholar 

  • Brooks, H. E., and R. J. Donaldson Jr., 1963: Airflow structure of a tornadic storm. J. Atmos. Sci., 20, 533–545.

    Article  Google Scholar 

  • Burgess, D. W., and R. P. Davies-Jones, 1979: Unusual tornadic storms in eastern Oklahoma on 5 December 1975. Mon. Wea. Rev., 107, 451–457.

    Article  Google Scholar 

  • Burgess, D. W., V. T. Wood, and R. A. Brown, 1982: Mesocyclone evolu-tion statistics. Preprints, 12th Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 422–424.

    Google Scholar 

  • Carpenter, R. L., Jr., K. K. Droegemeier, P. R. Woodward, and C. E. Hane, 1990: Application of the Piecewise Parabolic Method (PPM) to meteorological modeling. Mon. Wea. Rev., 118, 586–612.

    Article  Google Scholar 

  • Chang, C.-Y., and M. Yoshizaki, 1993: Three-dimensional modeling study of squall lines observed in COPT81. J. Atmos. Sci., 50, 161–183.

    Article  Google Scholar 

  • Charba, J., and Y. Sasaki, 1971: Structure and movement of the severe thunderstorms of 3 April 1964 as revealed from radar and surface mesonetwork data analysis. J. Meteor. Soc. Japan, 49, 191–213.

    Google Scholar 

  • Chen, C., 1995: Numerical simulations of gravity currents in uniform shear flows. Mon. Wea. Rev., 123, 3240–3253.

    Article  Google Scholar 

  • Chen, C.-H., and H. D. Orville, 1980: Effects of mesoscale convergence on cloud convection. J. Appl. Meteor., 19, 256–274.

    Article  Google Scholar 

  • Chin, C.-N. S., and R. B. Wilhelmson, 1998: Evolution and structure of tropical squall line elements within a moderate CAPE and strong low-level jet environment. J. Atmos. Sci., 55, 3089–3113.

    Article  Google Scholar 

  • Chin, C.-N. S., Q. Fu, M. M. Bradley, and C. R. Molenkamp, 1995: Modeling of a tropical squall line in two dimensions: Sensitivity to radiation and comparison with a midlatitude case. J. Atmos. Sci., 52, 3172–3193.

    Article  Google Scholar 

  • Clark, T. L., 1973: Numerical modeling of the dynamics and microphysics of warm cumulus convection. J. Atmos. Sci., 30, 857–878.

    Article  Google Scholar 

  • Clark, T. L., 1977: A small-scale dynamic model using a terrain-follow-ing coordinate transformation. J. Comput. Phys., 24, 186–215.

    Article  Google Scholar 

  • Clark, T. L., 1979: Numerical simulations with a three-dimensional cloud model: Lateral boundary condition experiments and multicellular severe storm simulations. J. Atmos. Sci., 36, 2191–2215.

    Article  Google Scholar 

  • Clark, T. L., and R. D. Farley, 1984: Severe downslope windstorm calculations in two and three spatial dimensions using anelastic interactive grid nesting: A possible mechanism for gustiness. J. Atmos. Sci., 41, 329–350.

    Article  Google Scholar 

  • Clark, T. L., W. D. Hall, and J. L. Coen, 1996: Source code documenta-tion for the Clark-Hall cloud-scale model: Code version G3CH01. NCAR Tech. Note NCAR/TN-426+STR, 137 pp. [Available from NCAR Information Service, P.O. Box 3000, Boulder, CO 80307.]

    Google Scholar 

  • Cotton, W. R., and R. A. Anthes, 1989: Storm and Cloud Dynamics., Academic Press, 883 pp.

    Google Scholar 

  • Clark, T. L., M. A. Stephens, T. Nehrkorn, and G. J. Tripoli, 1982: The Colorado State University three-dimensional mesoscale model. Part II: An ice phase parameterization. J. Rech. Atmos., 16, 295–320.

    Google Scholar 

  • Crook, N. A., and M. W. Moncrieff, 1988: The effect of large-scale convergence on the generation and maintenance of deep moist convection. J. Atmos. Sei., 45, 3606–3624.

    Article  Google Scholar 

  • Crook, N. A., and J. D. Tuttle, 1994: Numerical simulations initialized with radar-derived winds. Part II: Forecasts of three gust-front cases. Mon. Wea. Rev., 122, 1204–1217.

    Google Scholar 

  • Crook, N. A., and M. L. Weisman, 1998: Comparison of supercell behav-ior in a convective boundary layer with that in horizontally-homogeneous environment. Preprints, 19th Conf. on Severe Local Storms, Minneapolis, MN, Amer. Meteor. Soc., 253256.

    Google Scholar 

  • Cullen, M. J. P., 1990: A test of a semi-implicit integration technique for a fully compressible non-hydrostatic model. Quart. J. Roy. Meteor. Soc., 116, 1253–1258.

    Article  Google Scholar 

  • Davies-Jones, R. P., D. W. Burgess, and M. P. Foster, 1990: Test of helicity as a tornado forecast parameter. Preprints, 16th Conf. on Severe Local Storms, Kananaskis Park, AB, Canada, Amer. Meteor. Soc., 588–592.

    Google Scholar 

  • Deardorff, J. W., 1972: Numerical investigation of neutral and unstable planetary boundary layers. J. Atmos. Sci., 29, 91–115.

    Article  Google Scholar 

  • Droegemeier, K. K., and R. B. Wilhelmson, 1986: Kelvin-Helmholtz instability in a numerically simulated thunderstorm outflow. Bull. Amer. Meteor. Soc., 67, 416–417.

    Google Scholar 

  • Droegemeier, K. K., and, 1987: Numerical simulation of thunderstorm outflow dynamics. Part I: Outflow sensitivity experiments and turbulence dynamics. J. Atmos. Sci., 44, 1180–1210.

    Google Scholar 

  • Droegemeier, K. K., and R. P. Davies-Jones, 1987: Simulation of thunderstorm microbursts with a supercompressible numerical model. Preprints, Fifth Int. Conf. on Numerical Methods in Laminar and Turbulent Flow, Montreal, PQ, Canada, Amer. Meteor. Soc.

    Google Scholar 

  • Droegemeier, K. K., S. M. Lazarus, and R. Davies-Jones, 1993: The influence of helicity on numerically simulated convective storms. Mon. Wea. Rev., 121, 2005–2029.

    Article  Google Scholar 

  • Droegemeier, K. K., and Coauthors, 1996a: Realtime numerical prediction of storm-scale weather during VORTEX 95, Part I: Goals and methodology. Preprints, 18th Conf. on Severe Local Storms, San Francisco, CA, Amer. Meteor. Soc., 6–10.

    Google Scholar 

  • Droegemeier, K. K., and Coauthors, 1996b: The 1996 CAPS spring operational forecasting period—Realtime storm-scale NWP, Part I: Goals and methodology. Preprints, 11th Conf. on Numerical Weather Prediction, Norfolk, VA, Amer. Meteor. Soc., 294–296.

    Google Scholar 

  • Droegemeier, K. K., and Coauthors, 1999: The explicit numerical prediction of an intense hailstorm using WSR-88D observations: The need for realtime access to Level II data and plans for a prototype acquisition system. Preprints, 15th Int. Conf. on Interactive Information Processing Systems (ZIPS) for Meteorology, Oceanography, and Hydrology, Dallas, TX, Amer. Meteor. Soc., 295–299.

    Google Scholar 

  • Dudhia, J., 1993: A nonhydrostatic version of the Penn State-NCAR Mesoscale Model: Validation tests and simulations of an Atlantic cyclone and cold front. Mon. Wea. Rev., 121, 1493–1513.

    Article  Google Scholar 

  • Durran, D. R., 1989: Improving the anelastic approximation. J. Atmos. Sci., 46, 1453–1461.

    Article  Google Scholar 

  • Durran, D. R., 1990: Reply. J. Atmos. Sci., 47, 1819–1820.

    Article  Google Scholar 

  • Durran, D. R., 1999: Numerical Methods for Wave Equations in Geophysi-cal Fluid Dynamics., Springer-Verlag, 468 pp.

    Google Scholar 

  • Emanuel, K. A., 1994: Atmospheric Convection., Oxford University Press, 580 pp.

    Google Scholar 

  • Ferrier, B. S., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci., 51, 249–280.

    Article  Google Scholar 

  • Fiedler, B. H., 1994: The thermodynamic speed limit and its violation in axisymmetric numerical simulations of tornado-like vortices. Atmos.—Ocean, 32, 335–339.

    Article  Google Scholar 

  • Fiedler, B. H., 1995: On modeling tornadoes in isolation from the parent storm. Atmos. Ocean, 33, 501–512.

    Article  Google Scholar 

  • Fiedler, B. H., 1998: Windspeed limits in numerically-simulated tornadoes with suction vortices. Quart. J. Roy. Meteor. Soc., 124, 2377–2392.

    Article  Google Scholar 

  • Fiedler, B. H., and R. Rotunno, 1986: A theory for maximum wind speeds in tornado-like vortices. J. Atmos. Sci., 43, 2328–2340.

    Article  Google Scholar 

  • Finley, C. A., W. R. Cotton, and R. A. Pielke, 1998a: Numerical simulation of two tornadoes produced by a high-precipitation supercell. Preprints, 19th Conf. on Severe Local Storms, Minneapolis, MN, Amer. Meteor. Soc., 206–209.

    Google Scholar 

  • Finley, C. A., and, 1998b: Secondary vortex development in a tornado vortex produced by a simulated supercell thunderstorm. Preprints, 19th Conf. on Severe Local Storms, Minneapolis, MN, Amer. Meteor. Soc., 359–362.

    Google Scholar 

  • Flora, S. D., 1954: Tornadoes of the United States., University of Oklahoma Press, 194 pp.

    Google Scholar 

  • Foster, I., 1995: Designing and Building Parallel Programs., Addison-Wesley, 381 pp.

    Google Scholar 

  • Foster, I., and C. Kesselman, 1999: Computational Grids. The Grid: Blueprint for a New Computing Intrastructure, J. Foster and C. Kesselman, Eds., Morgan Kaufmann Publishers, 15–50.

    Google Scholar 

  • Fovell, R. G., and P.-H. Tan, 1998: The temporal behavior of numerically simulated multicell-type storms. Part II: The convective cell life cycle and cell regeneration. Mon. Wea. Rev., 126, 551–577.

    Article  Google Scholar 

  • Fox, D. G., 1972: Numerical simulation of three-dimensional, shape-preserving convective elements. J. Atmos. Sci., 29, 32 2341.

    Google Scholar 

  • Fox-Rabinovitz, M. S., 1996: Computational dispersion properties of 3D staggered grids for a nonhydrostatic anelastic system. Mon. Wea. Rev., 124, 498–510.

    Article  Google Scholar 

  • Fujita, T. T., 1971: Proposed mechanisms of suction spots accompanied by tornadoes. Preprints, Seventh Conf. on Severe Local Storms, Kansas City, MO, Amer. Meteor. Soc., 208–213.

    Google Scholar 

  • Fujita, T. T., and H. Grandoso, 1968: Split of a thunderstorm into anticyclonic and cyclonic storms and their motion as determined from numerical model experiments. J. Atmos. Sci., 25, 416–439.

    Article  Google Scholar 

  • Gal-Chen, T., 1978: A method for the initialization of the anelastic equations: Implications for matching models with observations. Mon. Wea. Rev., 106, 587–606.

    Article  Google Scholar 

  • Gao, J., M. Xue, A. Shapiro, and K. K. Droegemeier, 1999: A variational method for the analysis of three-dimensional wind fields from two Doppler radars. Mon. Wea. Rev., 127, 2128–2142.

    Article  Google Scholar 

  • Gilmore, M., and L. J. Wicker, 1998: The influence of mid-tropospheric dryness on supercell morphology and evolution. Mon. Wea. Rev., 126, 943–958.

    Article  Google Scholar 

  • Grabowski, W. W., 1998: Toward cloud resolving modeling of large-scale tropical circulations: A simple cloud microphysics parameterization. J. Atmos. Sci., 55, 3283–3298.

    Article  Google Scholar 

  • Grasso, L. D., and W. R. Cotton, 1995: Numerical simulation of a tornado vortex. J. Atmos. Sci., 52, 1192–1203.

    Article  Google Scholar 

  • Grasso, L. D., and, 1998: Numerical simulation of the May 15, 1991 Laverne, Oklahoma tornado. Preprints, 19th Conf. on Severe Local Storms, Minneapolis, MN, Amer. Meteor. Soc., 278–282.

    Google Scholar 

  • Grasso, L. D., and E. R. Hilgendorf, 2001: Observations of a severe left moving thunderstorm. Wea. Forecasting, 16, 500–511.

    Article  Google Scholar 

  • Hane, C. E., 1973: The squall line thunderstorm: Numerical experimentation. J. Atmos. Sci., 30, 1672–1690.

    Article  Google Scholar 

  • Helsdon, J., Jr., and R. D. Farley, 1987: A numerical modeling study of a Montana thunderstorm: 2. Model results versus observations involving electrical aspects. J. Geophys. Res., 92 (D5), 5661–5675.

    Article  Google Scholar 

  • Hibbard, W., and D. Santek, 1990: The Vis5D system for easy interactive visualization. Proc. Visualization `90, San Francisco, CA, IEEE, 28–35.

    Google Scholar 

  • Hibbard, W., B. E. Paul, D. A. Santek, C. R. Dyer, A. L. Battaiola, and M.-F. Voidrot-Martinez, 1994: Interactive visualization of earth and space science computations. Computer, 27, 65–72.

    Article  Google Scholar 

  • Holt, T., and S. Raman, 1988: A review and comparative evaluation of multilevel boundary layer parameterizations for first-order and turbulent kinetic energy closure schemes. Rev. Geophys., 26, 761–780.

    Article  Google Scholar 

  • Hou, D., E. Kalnay, and K. K. Droegemeier, 2001: Objective verification of the SAMEX ‘88 ensemble forecasts. Mon. Wea. Rev., 129, 73–91.

    Article  Google Scholar 

  • Houze, R. A., Jr., 1993: Cloud Dynamics., Academic Press, 573 pp.

    Google Scholar 

  • Houze, R. A., Jr., and P. V. Hobbs, 1982: Organization and structure of precipitating cloud systems. Advances in Geophysics, Vol. 24, Academic Press, 225–315.

    Google Scholar 

  • Houze, R. A., Jr., W. Schmid, R. G. Fovell, and H.-H. Schiesser, 1993: Hailstorms in Switzerland: Left movers, right movers, and false hooks. Mon. Wea. Rev., 121, 3345–3370.

    Article  Google Scholar 

  • Howells, P., R. Rotunno, and R. K. Smith, 1988: A comparative study of atmospheric and laboratory-analogue numerical tornado-vortex models. Quart. J. Roy. Meteor. Soc., 114, 801–822.

    Article  Google Scholar 

  • Hsie, E. Y., R. D. Farley, and H. D. Orville, 1980: Numerical simulation of ice phase convective cloud seeding. J. Appl. Meteor., 19, 950–977.

    Article  Google Scholar 

  • Janish, P. R., K. K. Droegemeier, M. Xue, K. Brewster, and J. Levit, 1995: Evaluation of the advanced regional prediction system (ARPS) for storm-scale modeling applications in operational forecasting. Proc. 14th Conf. on Weather Analysis and Forecasting, Dallas, TX, Amer. Meteor. Soc., 224–229.

    Google Scholar 

  • Johns, R. H., and C. A. Doswell, 1992: Severe local storms forecasting. Wea. Forecasting, 7, 588–612.

    Article  Google Scholar 

  • Johnson, D. E., P. K. Wang, and J. M. Straka, 1994: A study of microphysical processes in the 2 August 1981 CCOPE super-cell storm. Atmos. Res., 33, 93–123.

    Article  Google Scholar 

  • Kaufmann, W. J., III, and L. L. Smarr, 1993: Supercomputing and the Transformation of Science., Scientific American Library, 238 pp.

    Google Scholar 

  • Kay, M. P., and L. J. Wicker, 1998: Numerical simulations of supercell interactions with thermal boundaries. Preprints, 19th Conf. on Severe Local Storms, Minneapolis, MN, Amer. Meteor. Soc., 246–248.

    Google Scholar 

  • Keller, D., and B. Vonnegut, 1976: Wind speeds required to drive straws and splinters into wood. J. Appl. Meteor., 59, 899–901.

    Article  Google Scholar 

  • Kennedy, P. C., N. E. Westcott, and R. W. Scott, 1993: Single-Doppler radar observations of a mini supercell tornadic thunderstorm. Mon. Wea. Rev., 121, 1860–1870.

    Article  Google Scholar 

  • Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulation. Meteor. Monogr., No. 32, Amer. Meteor. Soc., 84 pp.

    Google Scholar 

  • Klemp, J. B., 1987: Dynamics of tornadic thunderstorms. Ann. Rev. Fluid Mech., 19, 369–402.

    Article  Google Scholar 

  • Klemp, J. B., and R. Wilhelmson, 1978a: The simulation of three-dimen-sional convective storm dynamics. J. Atmos. Sci., 35, 1070 1096.

    Google Scholar 

  • Klemp, J. B., and, 1978b: Simulations of right- and left-moving storms produced through storm splitting. J. Atmos. Soc., 35, 1097–1110.

    Article  Google Scholar 

  • Klemp, J. B., and D. R. Durran, 1983: An upper boundary condition permitting internal gravity wave radiation in numerical mesoscale models. Mon. Wea. Rev., 111, 430–444.

    Article  Google Scholar 

  • Klemp, J. B., and R. Rotunno, 1983: A study of the tornadic region within a supercell thunderstorm. J. Atmos. Sci., 40, 359–377.

    Article  Google Scholar 

  • Klemp, J. B., R. B. Wilhelmson, and P. S. Ray, 1981: Observed and numerically simulated structure of a mature supercell thunderstorm. J. Atmos. Sci., 38, 1558–1580.

    Article  Google Scholar 

  • Klemp, J. B., R. Rotunno, and W. C. Skamarock, 1997: On the propaga-tion of internal bores. J. Fluid Mech., 331, 81–106.

    Article  Google Scholar 

  • Krueger, S. K., Q. Fu, K. N. Liou, and H.-N. S. Chin, 1995: Improvements of an ice-phase microphysics parameterization for use in numerical simulations of tropical convection. J. Appl. Meteor., 34, 281–287.

    Article  Google Scholar 

  • Kulie, M. S., and Y.-L. Lin, 1998: The structure and evolution of a numerically simulated high-precipitation supercell thunderstorm. Mon. Wea. Rev., 126, 2090–2116.

    Article  Google Scholar 

  • Lee, B. D., and R. B. Wilhelmson, 1997a: The numerical simulation of nonsupercell tornadogenesis. Part I: Initiation and evolution of pre-tornadic misocyclone circulations along a dry outflow boundary. J. Atmos. Sci., 54, 32–60.

    Article  Google Scholar 

  • Lee, B. D., and, 1997b: The numerical simulation of nonsuper-cell tornadogenesis. Part II: Evolution of a family of tornadoes along a weak outflow boundary. J. Atmos. Sci., 54, 2387–2415.

    Google Scholar 

  • Lemon, L. R., and C. A. Doswell III, 1979: Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis. Mon. Wea. Rev., 107, 1184–1197.

    Article  Google Scholar 

  • Lewellen, D. C., W. S. Lewellen, and J. Xia, 2000: The influence of a local swirl ratio on tornado intensification near the surface. J. Atmos. Sci., 57, 527–544.

    Article  Google Scholar 

  • Lewellen, W. S., 1976: Theoretical models of the tornado vortex. Symp. on Tornadoes: Assessment of Knowledge and Implications for Man, Lubbock, TX, Texas Tech. University, 107–143.

    Google Scholar 

  • Lewellen, W. S., 1993: Tornado vortex theory. The Tornado: Its Structure, Dynamics, Predictions, and Hazards, Geophys. Monogr., No. 79, Amer. Geophys. Union, 19–40.

    Chapter  Google Scholar 

  • Lewellen, W. S., and Y. P. Sheng, 1980: Modeling Tornado Dynamics., U.S. Nuclear Regulatory Commission, NTIS NUREG/CR-2585.

    Google Scholar 

  • Lewellen, W. S., and D. C. Lewellen, 1997: Large-eddy simulation of a tornado’s interaction with the surface. J. Atmos. Sci., 54, 581–605.

    Article  Google Scholar 

  • Lilly, D. K., 1962: On the numerical simulation of buoyant convection. Tellus, XIV, 148–172.

    Article  Google Scholar 

  • Lilly, D. K., 1969: Tornado dynamics. NCAR Manuscript 69–117, 39 pp. [Available from NCAR, P.O. Box 3000, Boulder, CO 80307.]

    Google Scholar 

  • Lilly, D. K., 1975: Severe storms and storm systems: Scientific back-ground, methods, and critical questions. Pure Appl. Geophys., 113, 713–734.

    Article  Google Scholar 

  • Lilly, D. K., 1979: The dynamical structure and evolution of thunder-storms and squall lines. Ann. Rev. Earth Planet. Sci., 7, 117–161.

    Article  Google Scholar 

  • Lilly, D. K., 1990: Numerical prediction of thunderstorms—Has its time come? Quart. J. Roy. Meteor. Soc., 116, 779–797.

    Google Scholar 

  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 1065–1092.

    Article  Google Scholar 

  • Liu, C. L., and M. W. Moncrieff, 1996: A numerical study of the effects of ambient flow and shear on density currents. Mon. Wea. Rev., 124, 2282–2303.

    Article  Google Scholar 

  • Lord, S. J., H. E. Willoughby, and J. M. Piotrowicz, 1984: Role of a parameterized ice-phase microphysics in an axisymmetric, nonhydrostatic tropical cyclone model. J. Atmos. Sci., 41, 2836–2848.

    Article  Google Scholar 

  • Mansell, E. R., 2000: Electrification and lightening in simulated supercell and non-supercell thunderstorms. Ph.D. dissertation, Dept. of Physics, University of Oklahoma, 211 pp.

    Google Scholar 

  • Markowski, P. M., J. M. Straka, E. N. Rasmussen, and D. O. Blanchard, 1998: Variability of storm-relative helicity during VORTEX. Mon. Wea. Rev., 126, 2959–2971.

    Article  Google Scholar 

  • McCaul, E. W., Jr., 1987: Observations of the Hurricane Danny tornado outbreak of 16 August 1985. Mon. Wea. Rev., 115, 1206–1223.

    Article  Google Scholar 

  • McCaul, E. W., Jr., 1993: Observations and simulations of hurricane-spawned tornadic storms. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., No. 79, Amer. Geophys. Union, 119–142.

    Chapter  Google Scholar 

  • McCaul, E. W., Jr., and M. L. Weisman, 1996: Simulations of shallow supercell storms in landfalling hurricane environments. Mon. Wea. Rev., 124, 408–429.

    Article  Google Scholar 

  • Mendez-Nunez, L. R., and J. J. Carroll, 1994: Application of the MacCormack scheme to atmospheric nonhydrostatic models. Mon. Wea. Rev., 122, 984–1000.

    Article  Google Scholar 

  • Mesinger, F. M., 1977: The forward-backward scheme and its use in a limited-area model. Contrib. Atmos. Phys., 50, 200–210.

    Google Scholar 

  • Meyers, M. P., P. J. DeMott, and W. R. Cotton, 1992: New primary ice nucleation parameterizations in an explicit cloud model. J. Appl. Meteor., 31, 26–50.

    Article  Google Scholar 

  • Michalakes, J., 2000: The same-source parallel implementation of MM5. J. Sci. Computing, 8, (1), 5–12.

    Google Scholar 

  • Moller, A. R., C. A. Doswell, III, M. P. Foster, and G. R. Woodall, 1994: The operational recognition of supercell thunderstorm environments and storm structures. Wea. Forecasting, 9, 327–347.

    Article  Google Scholar 

  • Moncrieff, M. W., and J. S. A. Green, 1972: The propagation and transfer properties of steady convective overturning in shear. Quart. J. Roy. Meteor. Soc., 98, 336–352.

    Article  Google Scholar 

  • Ogura, Y., 1963: A review of numerical modeling research on small scale convection in the atmosphere. Severe Local Storms, Meteor. Monogr., No. 27, Amer. Meteor. Soc., 65–75.

    Google Scholar 

  • Ogura, Y., and J. C. Charney, 1962: A numerical model of thermal convection in the atmosphere. Proc. Int. Symp. Numerical Weather Prediction, Tokyo, Japan, Meteor. Soc. Japan, 431–451.

    Google Scholar 

  • Ogura, Y., and N. A. Phillips, 1962: Scale analysis of deep and shallow convection in the atmosphere.. J. Atmos. Sci., 19, 173–179.

    Article  Google Scholar 

  • Ooyama, K. V., 1990: A thermodynamic foundation for modeling the moist atmosphere. J. Atmos. Sci., 47, 2580–2593.

    Article  Google Scholar 

  • Oreskes, N., K. Shrader-Frechette, and K. Belitz, 1994: Verification, validation, and confirmation of numerical models in the earth sciences. Science, 263, 641–646.

    Article  Google Scholar 

  • Orville, H. D., 1968: Ambient wind effects on the initiation and development of cumulus clouds over mountains. J. Atmos. Sci., 25, 385–403.

    Article  Google Scholar 

  • Pandya, R. E., and D. R. Durran, 1996: The influence of convectively generated thermal forcing on the mesoscale circulation around squall lines. J. Atmos. Sci., 53, 2924–2951.

    Article  Google Scholar 

  • Petch, J. C., 1998: Improved radiative transfer calculations from information provided by bulk microphysical schemes. J. Atmos. Sci., 55, 1846–1858.

    Article  Google Scholar 

  • Pielke, R. A., and Coauthors, 1992: A comprehensive meteorological modeling system—RAMS. Meteor. Atmos. Phys., 9, 69–91.

    Article  Google Scholar 

  • Proctor, F. H., 1987: The terminal area simulation system. Volume I: Theoretical formulation. NASA Contractor Rep. 4046, NASA, Washington, DC, 176 pp.

    Google Scholar 

  • Proctor, F. H., 1988: Numerical simulations of an isolated microburst: Part I: Dynamics and structure. J. Atmos. Sci., 45, 3137–3160.

    Article  Google Scholar 

  • Purser, R. J., and L. M. Leslie, 1991: Reducing the error in a time-split finite-difference scheme using an incremental technique. Mon. Wea. Rev., 119, 578–585.

    Article  Google Scholar 

  • Randall, D. A., and B. A. Wielicki, 1997: Measurements, models, and hypotheses in the atmospheric sciences. Bull. Amer. Meteor. Soc., 78, 399–406.

    Article  Google Scholar 

  • Rasmussen, E. N., J. M. Straka, R. Davies-Jones, C. A. Doswell III, F. H. Carr, M. D. Eilts, and D. R. MacGorman, 1994: Verifications of the Origins of Rotation in Tornadoes Experiment: VORTEX. Bull. Amer. Meteor. Soc., 75, 995–1006.

    Article  Google Scholar 

  • Redelsperger, J. L., and G. Sommeria, 1986: Three-dimensional simulation of a convective storm: Sensitivity studies on sub-grid parameterization and spatial resolution. J. Atmos. Sei., 22, 2619–2635.

    Article  Google Scholar 

  • Richardson, Y. P., 1999: The influence of horizontal variations in vertical shear and low-level moisture on numerically simulated convective storms. Ph.D. dissertation, University of Oklahoma, 236 pp.

    Google Scholar 

  • Richardson, Y. P., K. K. Drogemeier, and R. P. Davies-Jones, 1998: A study of the horizontally-varying vertical shear and CAPE on numerical simulated convective storms. Preprints, 19th Conf. on Severe Local Storms, Minneapolis, MN, Amer. Meteor. Soc., 249–251.

    Google Scholar 

  • Rotunno, R., 1984: An investigation of a three-dimensional asymmetric vortex. J. Atmos. Sci., 41, 283–298.

    Article  Google Scholar 

  • Rotunno, R., 1993: Supercell thunderstorm modeling and theory. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., No. 79, Amer. Geophys. Union, 57–73.

    Chapter  Google Scholar 

  • Rotunno, R., and J. B. Klemp, 1982: The influence of the shear-induced pressure gradient on thunderstorm motion. J. Atmos. Sci., 42, 271–292.

    Article  Google Scholar 

  • Rotunno, R., and, 1985: On the rotation and propagation of simulated supercell thunderstorms. Mon. Wea. Rev., 110, 136151.

    Google Scholar 

  • Rotunno, R., and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463–485.

    Article  Google Scholar 

  • Rutledge, S. A., and P. V. Hobbs, 1983: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. Part VIII: A model for the “seeder-feeder” process in warm-frontal rainbands. J. Atmos. Sci., 40, 1185–1206.

    Article  Google Scholar 

  • Sathye, A., G. Bassett, K. Droegemeier, M. Xue, and K. Brewster, 1996: Experiences using high performance computing for operational storm scale weather prediction. Concurrency: Practice and Experience, 8, 731–740.

    Article  Google Scholar 

  • Sathye, A., G. M. Xue, G. Bassett, and K. Droegemeier, 1997: Parallel weather modeling with the advanced regional prediction system. Parallel Computing, 23, 2243–2256.

    Article  Google Scholar 

  • Saunders, C. P., and S. L. Peck, 1998: Laboratory studies of the influence of the rime accretion rate on charge transfer during crystal/graupel collisions. J. Geophys. Res., 103, 13 9491–3956.

    Google Scholar 

  • Schiavone, J. A., and T. V. Papathomas, 1990: Visualizing meteo- rological data. Bull. Amer. Meteor. Soc., 71, 1012–1020.

    Article  Google Scholar 

  • Schlesinger, R. E., 1973: A numerical model of deep moist convection. Part I: Comparative experiments for variable ambient moisture and wind shear. J. Atmos. Sci., 30, 835–856.

    Article  Google Scholar 

  • Schlesinger, R. E., 1975: A three-dimensional numerical model of an isolated deep convective cloud: Preliminary results. J. Atmos. Sci., 35, 2268–2273.

    Article  Google Scholar 

  • Schlesinger, R. E., 1978: Nonlinear eddy-viscosity turbulence parameterization in anelastic three-dimensional flow: Some mathematical aspects. J. Atmos. Sci., 35, 2268–2273.

    Article  Google Scholar 

  • Schlesinger, R. E., 1980: A three-dimensional numerical model of an isolated deep thunderstorm. Part II: Dynamics of updraft splitting and mesovortex couplet evolution. J. Atmos. Sci., 37, 395–490.

    Article  Google Scholar 

  • Sherman, W. R., A. B. Craig, M. P. Baker, and C. Bushell, 1997: Scientific visualization, The Computer Science and Engineering Handbook, A. B. Tucker Jr., Ed., CRC Press, 820–846.

    Google Scholar 

  • Skamarock, W. C., and J. B. Klemp, 1992: The stability of time-split numerical methods for the hydrostatic and the nonhydrostatic elastic equations. Mon. Wea. Rev., 120, 2109–2127.

    Article  Google Scholar 

  • Skamarock, W. C., and, 1993: Adaptive grid refinement for two-dimensional and three-dimensional nonhydrostatic atmospheric flow. Mon. Wea. Rev., 121, 788–804.

    Article  Google Scholar 

  • Skamarock, W. C., and, 1994: Efficiency and accuracy of the Klemp-Wilhelmson time-splitting technique. Mon. Wea. Rev., 122, 2623–2630.

    Article  Google Scholar 

  • Skamarock, W. C., M. L. Weisman, and J. B. Klemp, 1994: Three-dimensional evolution of simulated long-lived squall lines. J. Atmos. Sci., 51, 2563–2584.

    Article  Google Scholar 

  • Skamarock, W. C., P. K. Smolarkiewicz, and J. B. Klemp, 1997: Precondi-tioned conjugate-residual solvers for Helmholtz equations in nonhydrostatic models. Mon. Wea. Rev., 125, 587–599.

    Article  Google Scholar 

  • Smolarkiewicz, P. K., V. Grubisic, and L. G. Margolin, 1997: On forward-in-time differencing for fluids: Stopping criteria for iterative solutions of anelastic pressure equations. Mon. Wea. Rev., 125, 647–654.

    Article  Google Scholar 

  • Snow, J. T., and R. L. Pauley, 1984: On a thermodynamic method for estimating maximum tornado wind speeds. J. Climate Appl. Meteor., 23, 1465–1468.

    Article  Google Scholar 

  • Soong, S.-T., 1974: Numerical simulation of warm rain development in an axisymmetric cloud model. J. Atmos. Sci., 31, 1262–1285.

    Article  Google Scholar 

  • Soong, S.-T., and Y. Ogura, 1973: A comparison between axi-symmetric and slab-symmetric cumulus cloud models. J. Atmos. Sci., 30, 879–883.

    Article  Google Scholar 

  • Steiner, J. T., 1973: A three-dimensional model of cumulus cloud development. J. Atmos. Sci., 30, 414–434.

    Article  Google Scholar 

  • Straka, J. M., R. B. Wilhelmson, L. J. Wicker, J. R. Anderson, and K. K. Droegemeier, 1993: Numerical solutions of a non-linear density current: A benchmark solution and comparisons. Int. J. Num. Meth. Fluids, 17, 1–22.

    Article  Google Scholar 

  • Sun, J., and N. A. Crook, 1996: Comparison of thermodynamic retrieval by the adjoint method with the traditional retrieval method. Mon. Wea. Rev., 124, 308–324.

    Article  Google Scholar 

  • Sun, J., and, 1997: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint: Model development and simulated data experiments. Mon. Wea. Rev., 125, 1642–1661.

    Google Scholar 

  • Takahashi, T., 1984: Thunderstorm electrification—A numerical study. J. Atmos. Sci., 41, 2541–2558.

    Article  Google Scholar 

  • Takahashi, T., 1987: Determination of lightning origins in a thunderstorm model. J. Meteor. Soc. Japan, 65, 777–794.

    Google Scholar 

  • Takahashi, T., 1988: Long-lasting trade-wind showers in a three-dimen-sional model. J. Atmos. Sci., 45, 3333–3353.

    Article  Google Scholar 

  • Takeda, T., 1971: Numerical simulation of a precipitating convective cloud: The formation of a “long-lasting” cloud. J. Atmos. Sci., 28, 350–376.

    Article  Google Scholar 

  • Tanguay, M., A. Robert, and R. Laprise, 1990: A semi-implicit semi-Lagrangian fully compressible regional forecast model. Mon. Wea. Rev., 118, 1970–1980.

    Article  Google Scholar 

  • Tao, W.-K., and J. Simpson, 1993: Goddard cumulus ensemble model. Part I: Model Description. TAO, 4, 35–72.

    Google Scholar 

  • Tao, W.-K., S. Lang, J. Simpson, C.-H. Sui, B. Ferrier, and M.-D. Chou, 1996: Mechanisms of cloud-radiation interaction in the tropics and midlatitudes. J. Atmos. Sci., 53, 2624–2651.

    Article  Google Scholar 

  • Tapp, M. C., and P. W. White, 1976: A non-hydrostatic mesoscale model. Quart. J. Roy. Meteor. Soc., 102, 277–296.

    Article  Google Scholar 

  • Trapp, R. J., and B. H. Fiedler, 1995: Tornado-like vortexgenesis in a simplified numerical model. J. Atmos. Sci., 52, 3757–3778.

    Article  Google Scholar 

  • Trapp, R. J., E. D. Mitchell, G. A. Tipton, D. W. Effertz, A. I. Watson, D. L. Andra Jr., and M. A. Magsig, 1999: Descending and nondescending tornadic vortex signatures detected by WSR88Ds. Wea. Forecasting, 14, 625–639.

    Article  Google Scholar 

  • Tremback, C. J., J. Powell, W. R. Cotton, and R. A. Pielke, 1987: The forward-in-time upstream advection scheme: Extension to higher orders. Mon. Wea. Rev., 115, 540–555.

    Article  Google Scholar 

  • Trier, S. B., and D. B. Parsons, 1995: Updraft dynamics within a numerically simulated subtropical rainband. Mon. Wea. Rev., 123, 39–58.

    Article  Google Scholar 

  • Tripoli, G. J., 1992: A nonhydrostatic mesoscale model designed to simulate scale interaction. Mon. Wea. Rev., 120, 1342–1359.

    Article  Google Scholar 

  • Tripoli, G. J., and W. R. Cotton, 1981: The use of ice-liquid water potential temperature as a thermodynamic variable in deep atmospheric models. Mon. Wea. Rev., 109, 1094–1102.

    Article  Google Scholar 

  • Tripoli, G. J., and, 1989: Numerical study of an observed mesoscale convective system. Part I: Simulated genesis and comparison with observations. Mon. Wea. Rev., 117, 273–304.

    Google Scholar 

  • Tufte, E. R., 1997: Visual Explanations., Graphics Press, 157 pp.

    Google Scholar 

  • Wakimoto, R. M., and J. W. Wilson, 1989: Non-supercell tornadoes. Mon. Wea. Rev., 117, 1113–1140.

    Article  Google Scholar 

  • Walko, R. L., 1988: Plausibility of substantial dry adiabatic subsi- dence in a tornado core. J. Atmos. Sci., 45, 2251–2267.

    Article  Google Scholar 

  • Walko, R. L., 1993: Tornado spin-up beneath a convective cell: Required basic structure of the near-field boundary layer winds. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., No. 79, Amer. Geophys. Union, 89–95.

    Chapter  Google Scholar 

  • Wang, D., M. Xue, V. C. Wong, and K. K. Droegemeier, 1996: Prediction and simulation of convective storms during VORTEX `95. Preprints, 11th Conf. on Numerical Weather Prediction, Norfolk, VA, Amer. Meteor. Soc., 301–303.

    Google Scholar 

  • Ward, N. B., 1972: The exploration of certain laboratory features of tornado dynamics using a laboratory model. J. Atmos. Sci., 29, 1194–1204.

    Article  Google Scholar 

  • Weisman, M. L., 1993: The genesis of severe, long-lived bow echos. J. Atmos. Sci., 50, 645–670.

    Article  Google Scholar 

  • Weisman, M. L., and J. B. Kiemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504–520.

    Article  Google Scholar 

  • Weisman, M. L., and, 1984: The structure and classification of numerically simulated convective storms in directionally varying wind shears. Mon. Wea. Rev., 112, 2479–2498.

    Article  Google Scholar 

  • Weisman, M. L., and H. B. Bluestein, 1985: Dynamics of numerically simulated LP storms. Preprints, 14th Goof on Severe Local Storms, Indianapolis, IN, Amer. Meteor. Soc., 267–270.

    Google Scholar 

  • Weisman, M. L., J. B. Kiemp, and R. Rotunno, 1988: Structure and evolution of numerically simulated squall lines. J. Atmos. Sci., 45, 1990–2013.

    Article  Google Scholar 

  • Weisman, M. L., W. C. Skamarock, and J. B. Klemp, 1997: The resolution dependence of explicitly modeled convective systems. Mon. Wea. Rev., 125, 527–548.

    Article  Google Scholar 

  • Wicker, L. J., 1996: The role of near surface wind shear on low-level mesocyclone generation and tornadoes. Preprints, 18th Conf on Severe Local Storms, San Francisco, CA, Amer. Meteor. Soc., 115–119.

    Google Scholar 

  • Wicker, L. J., 1998: The role of low-level shear, mid-level shear, and CAPE in low-level mesocyclone generation. Preprints, 19th Conf. on Severe Local Storms, Minneapolis, MN, Amer. Meteor. Soc., 222–225.

    Google Scholar 

  • Wicker, L. J., and R. B. Wilhelmson, 1995: Simulation and analysis of tornado development and decay within a three-dimensional supercell thunderstorm. J. Atmos. Sci., 52, 2675–2703.

    Article  Google Scholar 

  • Wicker, L. J., and W. C. Skamarock, 1998: A time-splitting scheme for the elastic equations incorporating second-order Runge–Kutta time differencing. Mon. Wea. Rev., 126, 1992–1999.

    Article  Google Scholar 

  • Wicker, L. J., M. P. Kay, and M. P. Foster, 1997: STORMTIPE-95: A convective storm forecast experiment. Wea. Forecasting, 12, 427–436.

    Article  Google Scholar 

  • Wilhelmson, R. B., 1974: The life cycle of a thunderstorm in three dimensions. J. Atmos. Sci., 31, 1629–1651.

    Article  Google Scholar 

  • Wicker, L. J., 1977: On the thermodynamic equation for deep convection. Mon. Wea. Rev., 105, 545–549.

    Article  Google Scholar 

  • Wicker, L. J., and Y. Ogura, 1972: The pressure perturbation and the numerical modeling of a cloud. J. Atmos. Sci., 29, 1295–1307.

    Article  Google Scholar 

  • Wicker, L. J., and J. B. Klemp, 1978: A three-dimensional numerical simulation of splitting that leads to long-lived storms. J. Atmos. Sci., 35, 1974–1986.

    Article  Google Scholar 

  • Wicker, L. J., and, 1981: A three-dimensional numerical simula-tion of splitting severe storms on 3 April 1964. J. Atmos. Sci., 38, 1581–1600.

    Article  Google Scholar 

  • Wicker, L. J., and C.-S. Chen, 1982: A simulation of the development of successive cells along a cold outflow boundary. J. Atmos. Sci., 39, 1466–1483.

    Google Scholar 

  • L. J. Wicker, H. E. Brooks, and C. Shaw, 1989: The display of modeled storms. Preprints, Fifth Int. Conf on Interactive and Information Processing Systems for Meteorology, Oceanography, and Hydrology, Anaheim, CA, Amer. Meteor. Soc., 166–171.

    Google Scholar 

  • Wicker, L. J., and Coauthors, 1990: A study of the evolution of a numerically modeled severe storm. Int. J. Supercomputing Appl., 4, 20–36.

    Article  Google Scholar 

  • Wicker, L. J., D. P. Wojtowicz, C. Shaw, J. Hagedorn, and S. Koch, 1995: NCSA PATHFINDER: Probing ATmospHeric Flows in an INtegrated and Distributed EnviRonment. Visualization Techniques in Space and Atmospheric Sciences, E. P. Szuszczewicz and J. H. Bredekamp, Eds., NASA, 289–296.

    Google Scholar 

  • Wicker, L. J., and Coauthors, 1996: Visualization of storm and tornado development for an OMNIMAX film and for the CAVE. Preprints, 12th Int. Conf. on Interactive Information and Processing Systems for Meteorology, Oceanography, and Hydrology, Atlanta, GA, Amer. Meteor. Soc., 135–138.

    Google Scholar 

  • Xue, M., K. K. Droegemeier, V. Wong, A. Shapiro, and K. Brewster, 1995: ARPS User’s Guide. CAPS, 375 pp. [Available from Center for Analysis and Prediction of Storms, University of Oklahoma, Sarkeys Energy Center, Room 1110, 100 East Boyd Street, Norman, OK 73019 or online at http://wwwcaps.ou.edu/ARPS/.]

    Google Scholar 

  • Xue, M., K. K. and Coauthors, 1996a: Realtime numerical prediction of storm-scale weather during VORTEX 95, Part II: Operations summary and example predictions. Preprints, 18th Conf on Severe Local Storms, San Francisco, CA, Amer. Meteor. Soc., 178–182.

    Google Scholar 

  • Xue, M., K. K. and Coauthors, 1996b: The 1996 CAPS spring operational forecasting period—Realtime storm-scale NWP, Part II: Operational summary and sample cases. Preprints, 11th Conf. on Numerical Weather Prediction, Norfolk, VA, Amer. Meteor. Soc., 297–300.

    Google Scholar 

  • Xue, M., K. K. Q. Xu, and K. K. Droegemeier, 1997: A theoretical and numerical study of density currents in non-constant shear flows. J. Atmos. Sci., 54, 1998–2019.

    Article  Google Scholar 

  • K. K. Droegemeier, and V. Wong, 2000: The Advanced Regional Prediction System (ARPS)—A multiscale nonhydro- static atmospheric simulation and prediction tool. Part I: Model dynamics and verification. Meteor. Atmos. Phys., 75, 161–193.

    Article  Google Scholar 

  • K. K. Droegemeier, A. Shapiro, K. Brewster, F. Carr, D. Weber, Y. Liu, and D.-H. Wang, 2001: The Advanced Regional Prediction System (ARPS)—A multiscale nonhydrostatic atmospheric simulation and prediction tool. Part II: Model physics and applications. Meteor. Atmos. Phys., 76, 134–165.

    Google Scholar 

  • Yang, M.-J., and R. A. Houze Jr., 1995: Sensitivity of squall line rear inflow to ice microphysics and environmental humidity. Mon. Wea. Rev., 123, 3175–3193.

    Article  Google Scholar 

  • Zhang, D.-L., H.-R. Chang, N. L. Seaman, T. T. Warner, and J. M. Fritsch, 1986: A two-way interactive nesting procedure with variable terrain resolution. Mon. Wea. Rev., 114, 1330–1339.

    Article  Google Scholar 

  • Ziegler, C. L., T. J. Lee, and R. A. Pielke Sr., 1997: Convective initiation at the dryline: A modeling study. Mon. Wea. Rev., 125, 1001–1026.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 American Meteorological Society

About this chapter

Cite this chapter

Wilhelmson, R.B., Wicker, L.J. (2001). Numerical Modeling of Severe Local Storms. In: Doswell, C.A. (eds) Severe Convective Storms. Meteorological Monographs. American Meteorological Society, Boston, MA. https://doi.org/10.1007/978-1-935704-06-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-935704-06-5_4

  • Publisher Name: American Meteorological Society, Boston, MA

  • Online ISBN: 978-1-935704-06-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics