Skip to main content

Pathophysiology of osteoarthritis

  • Chapter
  • First Online:
  • 3446 Accesses

Abstract

Human movement is made possible by synovial fluid, or freely moving, and cartilaginous, or fixed, joints [1]. The synovial joint is a functional connective tissue unit that allows two opposed limb bones to move freely in relation to each other.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gardner DL. Problems and paradigms in joint pathology. J Anat. 1994;184:465-476.

    Google Scholar 

  2. McLeod WD, Hunter S. Biomechanical analysis of the knee: primary functions as elucidated by anatomy. Phys Ther. 1980;60:1561-1564.

    Google Scholar 

  3. Kishner S, Courseault J, Authement A. Knee joint anatomy. Available at: http://emedicine.medscape.com/article/1898986-overview. Last accessed December 7, 2012.

  4. Abdul-Jabar HB, Walsh U, Rashid A, Rajkumar S. Primary meningococcal osteoarthritis of the knee—case report and review of the literature. Eur Orthop Traumatol. 2011;2:149-152.

    Google Scholar 

  5. Niitsu M. Cystic and cyst-like lesions of the knee. In: Niitsu M, ed. Magnetic Resonance Imaging of the Knee. Springer-Verlag Berlin Heidelberg; 2013: 181-198.

    Google Scholar 

  6. Berenbaum F. Osteoarthritis. B. Pathology and pathogenesis. In: Klippel JH, Stone JH, Crofford LJ, White PH, eds. Primer on the Rheumatic Diseases. New York, NY: Springer Science+Business Media, LLC; 2008:229-234.

    Google Scholar 

  7. Symmons D, Mathers C, Pfleger B. Global burden of osteoarthritis in the year 2000. World Health Organization Web site. Available at: www.who.int/healthinfo/statistics/bod_osteoarthritis.pdf. Accessed December 7, 2012.

  8. Loeser RF, Goldring SR, Scanzello CR, Goldring MB. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum. 2012;64:1697-1707.

    Google Scholar 

  9. Goldring MB, Goldring SR. Osteoarthritis. J Cell Physiol. 2007;213:626-634.

    Google Scholar 

  10. Horton WE Jr, Bennion P, Yang L. Cellular, molecular, and matrix changes in cartilage during aging and osteoarthritis. J Musculoskelet Neuronal Interact. 2006;6:379-381.

    Google Scholar 

  11. Bahk Y-W. Degenerative joint diseases. In: Bahk Y-W, ed. Combined Scintigraphic and Radiographic Diagnosis of Bone and Joint Diseases, Including Gamma Correction Interpretation. 4th ed. Berlin, Germany: Springer-Verlag Berlin Heidelberg; 2013:141-183.

    Google Scholar 

  12. Bijlsma JWJ, Berenbaum F, Lafeber FPJG. Osteoarthritis: an update with relevance for clinical practice. Lancet. 2011;377:2115-2126.

    Google Scholar 

  13. Altman RD. Osteoarthritis in the elderly population. In: Nakasato Y, Yung RL, eds. Geriatric Rheumatology. A Comprehensive Approach. New York, NY: Springer Science+Business Media, LLC; 2011:187-196.

    Google Scholar 

  14. Myers SL. Osteoarthritis and crystal-associated synovitis. In: Hunder GG, ed. Atlas of Rheumatology, 4th ed. Philadelphia, PA: Current Medicine LLC; 2005:54-81.

    Google Scholar 

  15. Castañeda S, Roman-Blas JA, Largo R, Herrero-Beaumont G. Subchondral bone as a key target for osteoarthritis treatment. Biochem Pharmacol. 2012;83:315-323.

    Google Scholar 

  16. Burr DB, Gallant MA. Bone remodelling in osteoarthritis. Nat Rev Rheumatol. 2012;8:665-673.

    Google Scholar 

  17. Sniekers YH, Intema F, Lafeber FPJG, et al. A role for subchondral bone changes in the process of osteoarthritis; a micro-CT study of two canine models. BMC Musculoskelet Disord. 2008;9:20.

    Google Scholar 

  18. Tat SK, Pelletier J-P, Lajeunesse D, Fahmi H, Duval N, Martel-Pelletier J. Differential modulation of RANKL isoforms by human osteoarthritic subchondral bone osteoblasts: influence of osteotropic factors. Bone. 2008;43:284-291.

    Google Scholar 

  19. Conaghan PG, Vanharanta H, Dieppe PA. Is progressive osteoarthritis an atheromatous vascular disease? Ann Rheum Dis. 2005;64:1539-1541.

    Google Scholar 

  20. Walsh D. Neurogenic factors in the etiopathogenesis of osteoarthritis. Paper presented at: 10th World Congress of the International Cartilage Repair Society; May 12-15, 2012; Montreal, Quebec, Canada.

    Google Scholar 

  21. Botter SM, van Osch GJVM, Clockaerts S, Waarsing JH, Weinans H, van Leeuwen JPTM. Osteoarthritis induction leads to early and temporal subchondral plate porosity in the tibial plateau of mice: an in vivo microfocal computed tomography study. Arthritis Rheum. 2011;63:2690-2699.

    Google Scholar 

  22. Weinans H, Siebelt M, Agricola R, Botter SM, Piscaer TM, Waarsing JH. Pathophysiology of peri-articular bone changes in osteoarthritis. Bone. 2012;51:190-196.

    Google Scholar 

  23. Kumarasinghe DD, Perilli E, Tsangari H, et al. Critical molecular regulators, histomorphometric indices and their correlations in the trabecular bone in primary hip osteoarthritis. Osteoarthritis Cartilage. 2010;18:1337-1344.

    Google Scholar 

  24. Sakao K, Takahashi KA, Arai Y, et al. Osteoblasts derived from osteophytes produce interleukin-6, interleukin-8, and matrix metalloproteinase-13 in osteoarthritis. J Bone Miner Metab. 2009;27:412-423.

    Google Scholar 

  25. Menkes C-J, Lane NE. Are osteophytes good or bad? Osteoarthritis Cartilage. 2004;12(suppl A):S53-S54.

    Google Scholar 

  26. Sellam J, Berenbaum F. The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nat Rev Rheumatol. 2010;6:625-635.

    Google Scholar 

  27. Scanzello CR, Goldring SR. The role of synovitis in osteoarthritis pathogenesis. Bone. 2012;51:249-257.

    Google Scholar 

  28. Hill CL, Seo GS, Gale D, Totterman S, Gale ME, Felson DT. Cruciate ligament integrity in osteoarthritis of the knee. Arthritis Rheum. 2005;52:794-799.

    Google Scholar 

  29. Hasegawa A, Otsuki S, Pauli C, et al. Anterior cruciate ligament changes in the human knee joint in aging and osteoarthritis. Arthritis Rheum. 2012;64:696-704.

    Google Scholar 

  30. Sharma L, Chmiel JS, Almagor O, et al. The role of varus and valgus alignment in the initial development of knee cartilage damage by MRI: the MOST Study. Ann Rheum Dis. 2012;epub ahead of print.

    Google Scholar 

  31. Arden N, Nevitt MC. Osteoarthritis: epidemiology. Best Pract Res Clin Rheumatol. 2006;20:3-25.

    Google Scholar 

  32. Conde J, Scotece M, Gómez R, Lopez V, Gómez-Reino JJ, Gualillo O. Adipokines and osteoarthritis: novel molecules involved in the pathogenesis and progression of disease. Arthritis. 2011; epub doi: 10.1155/2011/203901.

  33. Anandacoomarasamy A, Leibman S, Smith G, et al. Weight loss in obese people has structure-modifying effects on medial but not on lateral knee articular cartilage. Ann Rheum Dis. 2012;71:26-32.

    Google Scholar 

  34. Leong DJ, Sun HB. Events in articular chondrocytes with aging. Curr Osteoporos Rep. 2011;9:196-201.

    Google Scholar 

  35. Shimada H, Sakakima H, Tsuchimochi K, et al. Senescence of chondrocytes in aging articular cartilage: GADD45β mediates p21 expression in association with C/EBPβ in senescence-accelerated mice. Pathol Res Pract. 2011;207:225-231.

    Google Scholar 

  36. Brandl A, Hartmann A, Bechmann V, Graf B, Nerlich M, Angele P. Oxidative stress induces senescence in chondrocytes. J Orthop Res. 2011;29:1114-1120.

    Google Scholar 

  37. Dai S-M, Shan Z-Z, Nakamura H, et al. Catabolic stress induces features of chondrocyte senescence through overexpression of caveolin 1: possible involvement of caveolin 1–induced down-regulation of articular chondrocytes in the pathogenesis of osteoarthritis. Arthritis Rheum. 2006;54:818-831.

    Google Scholar 

  38. Martin JA, Buckwalter JA. The role of chondrocyte senescence in the pathogenesis of osteoarthritis and in limiting cartilage repair. J Bone Joint Surg Am. 2003;85(suppl 2):106-110.

    Google Scholar 

  39. Nah S-S, Choi I-Y, Lee CK, et al. Effects of advanced glycation end products on the expression of COX-2, PGE2 and NO in human osteoarthritic chondrocytes. Rheumatology (Oxford). 2008;47:425-431.

    Google Scholar 

  40. Nah S-S, Choi I-Y, Yoo B, Kim YG, Moon H-B, Lee C-K. Advanced glycation end products increases matrix metalloproteinase-1, -3, and -13, and TNF-α in human osteoarthritic chondrocytes. FEBS Lett. 2007;581:1928-1932.

    Google Scholar 

  41. Huang C-Y, Lai K-Y, Hung L-F, Wu W-L, Liu F-C, Ho L-J. Advanced glycation end products cause collagen II reduction by activating Janus kinase/signal transducer and activator of transcription 3 pathway in porcine chondrocytes. Rheumatology (Oxford). 2011;50:1379-1389.

    Google Scholar 

  42. Hiran TS, Moulton PJ, Hancock JT. Detection of superoxide and NADPH oxidase in porcine articular chondrocytes. Free Radic Biol Med. 1997;23:736-743.

    Google Scholar 

  43. Tiku ML, Shah R, Allison GT. Evidence linking chondrocyte lipid peroxidation to cartilage matrix protein degradation. Possible role in cartilage aging and the pathogenesis of osteoarthritis. J Biol Chem. 2000;275:20069-20076.

    Google Scholar 

  44. Jallali N, Ridha H, Thrasivoulou C, Underwood C, Butler PEM, Cowen T. Vulnerability to ROS-induced cell death in ageing articular cartilage: the role of antioxidant enzyme activity. Osteoarthritis Cartilage. 2005;13:614-622.

    Google Scholar 

  45. Blanco F, Rego I, Ruiz-Romero C. The role of mitochondria in osteoarthritis. Nat Rev Rheumatol. 2011;7:161-169.

    Google Scholar 

  46. Loeser RF, Shanker G, Carlson CS, Gardin JF, Shelton BJ, Sonntag WE. Reduction in the chondrocyte response to insulin-like growth factor 1 in aging and osteoarthritis: studies in a non-human primate model of naturally occurring disease. Arthritis Rheum. 2000;43:2110-2120.

    Google Scholar 

  47. Martin JA, Ellerbroek SM, Buckwalter JA. Age-related decline in chondrocyte response to insulin-like growth factor-I: the role of growth factor binding proteins. J Orthop Res. 1997;15:491-498.

    Google Scholar 

  48. Chubinskaya S, Kumar B, Merrihew C, Heretis K, Rueger DC, Kuettner KE. Age-related changes in cartilage endogenous osteogenic protein-1 (OP-1). Biochim Biophys Acta. 2002;1588:126-134.

    Google Scholar 

  49. Blaney Davidson EN, Scharstuhl A, Vitters EL, van der Kraan PM, van den Berg WB. Reduced transforming growth factor-beta signaling in cartilage of old mice: role in impaired repair capacity. Arthritis Res Ther. 2005;7:R1338-R1347.

    Google Scholar 

  50. Scharstuhl A, van Beuningen HM, Vitters EL, van der Kraan PM, van den Berg WB. Loss of transforming growth factor counteraction on interleukin 1 mediated effects in cartilage of old mice. Ann Rheum Dis. 2002;61:1095-1098.

    Google Scholar 

  51. Loeser RF, Pacione CA, Chubinskaya S. The combination of insulin-like growth factor 1 and osteogenic protein 1 promotes increased survival of and matrix synthesis by normal and osteoarthritic human articular chondrocytes. Arthritis Rheum. 2003;48:2188-2196.

    Google Scholar 

  52. Lee SW, Song YS, Lee SY, et al. Downregulation of protein kinase CK2 activity facilitates tumor necrosis factor-α-mediated chondrocyte death through apoptosis and autophagy. PLoS One. 2011;6:e19163.

    Google Scholar 

  53. Taniguchi N, Caramés B, Ronfani L, et al. Aging-related loss of the chromatin protein HMGB2 in articular cartilage is linked to reduced cellularity and osteoarthritis. Proc Natl Acad Sci USA. 2009;106:1181-1186.

    Google Scholar 

  54. Scanzello CR, Plaas A, Crow MK. Innate immune system activation in osteoarthritis: is osteoarthritis a chronic wound? Curr Opin Rheumatol. 2008;20:565-572.

    Google Scholar 

  55. Goldring MB. Update on the biology of the chondrocyte and new approaches to treating cartilage diseases. Best Pract Res Clin Rheumatol. 2006;20:1003-1025.

    Google Scholar 

  56. Mobasheri A. Osteoarthritis 2012 year in review: biomarkers. Osteoarthritis Cartilage. 2012;20:1451-1464.

    Google Scholar 

  57. Henrotin Y, Gharbi M, Mazzucchelli G, Dubuc J-E, De Pauw E, Deberg M. Fibulin 3 peptides Fib3-1 and Fib3-2 are potential biomarkers of osteoarthritis. Arthritis Rheum. 2012;64:2260-2267.

    Google Scholar 

  58. Wang Y, Li D, Xu N, et al. Follistatin-like protein 1: a serum biochemical marker reflecting the severity of joint damage in patients with osteoarthritis. Arthritis Res Ther. 2011;13:R193.

    Google Scholar 

  59. Li D, Wang Y, Xu N, et al. Follistatin-like protein 1 is elevated in systemic autoimmune diseases and correlated with disease activity in patients with rheumatoid arthritis. Arthritis Res Ther. 2011;13:R17.

    Google Scholar 

  60. Lanyon P, O’Reilly S, Jones A, Doherty M. Radiographic assessment of symptomatic knee osteoarthritis in the community: definitions and normal joint space. Ann Rheum Dis. 1998;57:595-601.

    Google Scholar 

  61. Cicuttini FM, Baker J, Hart DJ, Spector TD. Association of pain with radiological changes in different compartments and views of the knee joint. Osteoarthritis Cartilage. 1996;4:143-147.

    Google Scholar 

  62. Felson DT, Chaisson CE, Hill CL, et al. The association of bone marrow lesions with pain in knee osteoarthritis. Ann Intern Med. 2001;134:541-549.

    Google Scholar 

  63. Xu L, Hayashi D, Roemer FW, Felson DT, Guermazi A. Magnetic resonance imaging of subchondral bone marrow lesions in association with osteoarthritis. Semin Arthritis Rheum. 2012;42:105-118.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francois Rannou .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Healthcare

About this chapter

Cite this chapter

Rannou, F. (2014). Pathophysiology of osteoarthritis. In: Atlas of Osteoarthritis. Springer Healthcare, Tarporley. https://doi.org/10.1007/978-1-910315-16-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-910315-16-3_3

  • Published:

  • Publisher Name: Springer Healthcare, Tarporley

  • Print ISBN: 978-1-910315-15-6

  • Online ISBN: 978-1-910315-16-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics