Skip to main content

Pathophysiology

  • Chapter
  • First Online:
  • 461 Accesses

Abstract

About half of all cancer patients show a cachexia syndrome, characterized by anorexia and loss of adipose tissue and skeletal muscle mass. Numerous cytokines have been postulated to play a role in the etiology of cancer cachexia. Cytokines can elicit effects that mimic leptin signaling and suppress orexigenic ghrelin and neuropeptide Y (NPY) signaling, inducing sustained anorexia and cachexia not accompanied by the usual compensatory response. Furthermore, cytokines have been implicated in the induction of cancer-related muscle wasting.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature. 1998;395:763-770.

    Google Scholar 

  2. Flier JS, Maratos-Flier E. Obesity and the hypothalamus: novel peptides for new pathways. Cell. 1998;92:437-440.

    Google Scholar 

  3. Schwartz MW, Figlewicz DP, Baskin DG, Woods SC, Porte D. Insulin in the brain: a hormonal regulator of energy balance. Endocr. Rev. 1992;13:387-414.

    Google Scholar 

  4. Inui A. Feeding and body-weight regulation by hypothalamic neuropeptides-mediation of the actions of leptin. Trends Neurosci. 1999;22:62-67.

    Google Scholar 

  5. Patra SK, Arora S. Integrative role of neuropeptides and cytokines in cancer anorexia–cachexia syndrome. Clin Chim Acta. 2012;413:1025-1034.

    Google Scholar 

  6. Inui A. Cancer anorexia-cachexia syndrome: are neuropeptides the key? Cancer Res. 1999;59:4493-4501.

    Google Scholar 

  7. Haslett PA. Anticytokine approaches to the treatment of anorexia and cachexia. Semin Oncol. 1998;25(2 Suppl 6):53-57.

    Google Scholar 

  8. Mantovani G, Maccio A, Lai P, Massa E. Cytokine activity in cancer-related anorexia/cachexia: role of megestrol acetate and medroxyprogesterone acetate. Semin. Oncol. 1998;25:45-52.

    Google Scholar 

  9. Sternberg EM. Neural-immune interactions in health and disease. J Clin Invest. 1997;100:2641-2647.

    Google Scholar 

  10. Licinio J, Wong ML. Pathways and mechanisms for cytokine signaling of the central nervous system. J Clin Invest. 1997;100:2941-2947.

    Google Scholar 

  11. Hopkins SJ, Rothwell NJ. Cytokines and the nervous system. I: Expression and recognition. Trends Neurosci. 1995;18:83-88.

    Google Scholar 

  12. Rothwell NJ, Hopkins SJ. Cytokines and the nervous system II: Actions and mechanisms of action. Trends Neurosci. 1995;18:130-136.

    Google Scholar 

  13. Tisdale M. Biology of cachexia. J Natl Cancer Inst. 1997;89:1763-1773.

    Google Scholar 

  14. Plata-Salaman CR. Immunoregulators in the nervous system. Neurosci Biobehav Rev. 1991;15:185-215.

    Google Scholar 

  15. Plata-Salaman CR. Anorexia during acute and chronic disease. Nutrition. 1996;12:69-78.

    Google Scholar 

  16. Moldawer LL, Copeland EM. Proinflammatory cytokines, nutritional support, and the cachexia syndrome: interactions and therapeutic options. Cancer. 1997;79:1828-1839.

    Google Scholar 

  17. Donohoe CL, Ryan AM, Reynolds JV. Cancer cachexia: mechanisms and clinical implications. Gastroenterol Res Pract. 2011;2011:601434.

    Google Scholar 

  18. Moldawer LL, Rogy MA, Lowry SF. The Role of Cytokines in Cancer Cachexia. J Parenter Enteral Nutr. 1992;16(6 Suppl):43S-49S.

    Google Scholar 

  19. Noguchi Y, Yoshikawa T, Matsumoto A, Svaninger GS, Gelin J. Are cytokines possible mediators of cancer cachexia? Surg Today. 1996;26:467-475.

    Google Scholar 

  20. Matthys P, Billiau A. Cytokines and cachexia. Nutrition. 1997;13:763-770.

    Google Scholar 

  21. Gelin J, Moldawer L, Lonnroth C, Sherry B. Role of endogenous tumor necrosis factor α and interleukin 1 for experimental tumor growth and the development of cancer cachexia. Cancer Res. 1991;51:415-421.

    Google Scholar 

  22. Torelli G, Meguid M. Use of recombinant human soluble TNF receptor in anorectic tumor-bearing rats. Am J Physiol Regul Integr Comp Physiol. 1999; 277:R850–R855.

    Google Scholar 

  23. McCarthy HD, Crowder RE, Dryden S, Williams G. Megestrol acetate stimulates food and water intake in the rat: effects on regional hypothalamic neuropeptide Y concentrations. Eur J Pharmacol. 1994;265:99-102.

    Google Scholar 

  24. Lenk K, Schuler G, Adams V. Skeletal muscle wasting in cachexia and sarcopenia: molecular pathophysiology and impact of exercise training. J Cachex Sarcopenia Muscle. 2010;1:9-21.

    Google Scholar 

  25. Williams A, Sun X, Fischer J. The expression of genes in the ubiquitin-proteasome proteolytic pathway is increased in skeletal muscle from patients with cancer. Surgery. 1999;126:744-749.

    Google Scholar 

  26. Llovera M, Garcia-Martinez C, Lopez-Soriano J, et al. Role of TNF receptor 1 in protein turnover during cancer cachexia using gene knockout mice. Mol Cell Endocrinol. 1998;142:183-189.

    Google Scholar 

  27. Sherry B, Gelin J, Fong Y, Marano M, Wei H. Anticachectin/tumor necrosis factor-alpha antibodies attenuate development of cachexia in tumor models. FASEB J. 1989;3:1956-1962.

    Google Scholar 

  28. Trikha M, Corringham R, Klein B. Targeted anti-interleukin-6 monoclonal antibody therapy for cancer. Clin Cancer Res. 2003;9:4653-4665.

    Google Scholar 

  29. Gabay C, Kushner I. Acute-phase proteins and other systemic responses to inflammation. N Engl J Med. 1999;340:448-454.

    Google Scholar 

  30. Falconer JS, Fearon KC, Ross JA, et al. Acute-phase protein response and survival duration of patients with pancreatic cancer. Cancer. 1995;75:2077-2082.

    Google Scholar 

  31. Falconer JS, Fearon KC, Plester CE, Ross JA, Carter DC. Cytokines, the acute-phase response, and resting energy expenditure in cachectic patients with pancreatic cancer. Ann Surg. 1994;219:325-331.

    Google Scholar 

  32. O’Gorman P, McMillan DC, McArdle CS. Prognostic factors in advanced gastrointestinal cancer patients with weight loss. Nutr Cancer. 1999;37:36-40.

    Google Scholar 

  33. McMillan DC. An inflammation-based prognostic score and its role in the nutrition-based management of patients with cancer. Proc Nutr Soc. 2008;67:257-262.

    Google Scholar 

  34. McMillan DC. Systemic inflammation, nutritional status and survival in patients with cancer. Curr Opin Clin Nutr Metab Care. 2009;12:223-226.

    Google Scholar 

  35. Marsik C, Kazemi-Shirazi L, Schickbauer T, et al. C-reactive protein and all-cause mortality in a large hospital-based cohort. Clin Chem. 2008;54:343-349.

    Google Scholar 

  36. Scott HR, McMillan DC, Brown DJF, Forrest LM, McArdle CS, Milroy R. A prospective study of the impact of weight loss and the systemic inflammatory response on quality of life in patients with inoperable non-small cell lung cancer. Lung Cancer. 2003;40:295-299.

    Google Scholar 

  37. Deans D, Tan B, Wigmore S, et al. The influence of systemic inflammation, dietary intake and stage of disease on rate of weight loss in patients with gastro-oesophageal cancer. Br J Cancer. 2009;100:63-69.

    Google Scholar 

  38. Tisdale MJ. Mechanisms of cancer cachexia. Physiol Rev. 2009;89:381-410.

    Google Scholar 

  39. Guttridge D. Molecular mechanisms of muscle wasting in cancer cachexia. Nutritional Support in Cancer. 2006:1-13.

    Google Scholar 

  40. Lum JJ, DeBerardinis RJ, Thompson CB. Autophagy in metazoans: cell survival in the land of plenty. Nat Rev Mol Cell Biol. 2005;6:439-448.

    Google Scholar 

  41. Lorite MJ, Smith HJ, Arnold JA, Morris A, Thompson MG, Tisdale MJ. Activation of ATP-ubiquitin-dependent proteolysis in skeletal muscle in vivo and murine myoblasts in vitro by a proteolysis-inducing factor (PIF). Br J Cancer. 2001;85:297-302.

    Google Scholar 

  42. Eley HL, Russell ST, Tisdale MJ. Effect of branched-chain amino acids on muscle atrophy in cancer cachexia. Biochem J. 2007;407:113-120.

    Google Scholar 

  43. Elkina Y, Haehling S, Anker SD, Springer J. The role of myostatin in muscle wasting: an overview. J Cachex Sarcopenia Muscle. 2011;2:143-151.

    Google Scholar 

  44. Benny Klimek ME, Aydogdu T, Link MJ, Pons M, Koniaris LG, Zimmers TA. Acute inhibition of myostatin-family proteins preserves skeletal muscle in mouse models of cancer cachexia. Biochem Biophys Res Commun. 2010;391:1548-1554.

    Google Scholar 

  45. Bonetto A, Penna F, Minero VG, et al. Deacetylase inhibitors modulate the myostatin/follistatin axis without improving cachexia in tumor-bearing mice. Curr Cancer Drug Targets. 2009;9:608-616.

    Google Scholar 

  46. van Royen M, Carbo N, Busquets S, et al. DNA fragmentation occurs in skeletal muscle during tumor growth: a link with cancer cachexia? Biochem Biophys Res Commun. 2000;270:535-537.

    Google Scholar 

  47. Trendelenburg AU, Meyer A, Rohner D, Boyle J, Hatakeyama S, Glass DJ. Myostatin reduces Akt/TORC1/p70S6 K signaling, inhibiting myoblast differentiation and myotube size. Am J Physiol Cell Physiol. 2009;296:C1258-C1270.

    Google Scholar 

  48. Amirouche A, Durieux A-C, Banzet S, et al. Down-regulation of Akt/mammalian target of rapamycin signaling pathway in response to myostatin overexpression in skeletal muscle. Endocrinology. 2009;150:286-294.

    Google Scholar 

  49. Morissette MR, Cook SA, Buranasombati C, Rosenberg MA, Rosenzweig A. Myostatin inhibits IGF-I-induced myotube hypertrophy through Akt. Am J Physiol Cell Physiol. 2009;297:C1124-C11232.

    Google Scholar 

  50. Bodine SC, Stitt TN, Gonzalez M, et al. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol. 2001;3:1014-1019.

    Google Scholar 

  51. Zdychova J, Komers R. Emerging role of Akt kinase/protein kinase B signaling in pathophysiology of diabetes and its complications. Physiol Res. 2005;54:1-16.

    Google Scholar 

  52. Brink M, Wellen J, Delafontaine P. Angiotensin II causes weight loss and decreases circulating insulin-like growth factor I in rats through a pressor-independent mechanism. J Clin Invest. 1996;97:2509-2516.

    Google Scholar 

  53. Musaro A, Giacinti C, Borsellino G, et al. Stem cell-mediated muscle regeneration is enhanced by local isoform of insulin-like growth factor 1. Proc Natl Acad Sci USA. 2004;101:1206-1210.

    Google Scholar 

  54. Costelli P, Muscaritoli M, Bossola M, et al. IGF-1 is downregulated in experimental cancer cachexia. Am J Physiol Regul Integr Comp Physiol. 2006;291:R674-R683.

    Google Scholar 

  55. Buck M, Chojkier M. Muscle wasting and dedifferentiation induced by oxidative stress in a murine model of cachexia is prevented by inhibitors of nitric oxide synthesis and antioxidants. EMBO J. 1996;15:1753-1765.

    Google Scholar 

  56. Laviano A, Meguid MM, Preziosa I, Rossi Fanelli F. Oxidative stress and wasting in cancer. Curr Opin Clin Nutr Metab Care. 2007;10:449-456.

    Google Scholar 

  57. Barreiro E, la Puente de B, Busquets S. Both oxidative and nitrosative stress are associated with muscle wasting in tumor-bearing rats. FEBS Lett. 2005;579:1646-1652.

    Google Scholar 

  58. Mantovani G, Maccio A, Madeddu C, et al. Antioxidant agents are effective in inducing lymphocyte progression through cell cycle in advanced cancer patients: assessment of the most important laboratory indexes of cachexia and oxidative stress. J Mol Med. 2003;81:664-673.

    Google Scholar 

  59. Chlebowski RT, Heber D. Hypogonadism in male patients with metastatic cancer prior to chemotherapy. Cancer Res. 1982;42:2495-2498.

    Google Scholar 

  60. Zitzmann M. Hormone substitution in male hypogonadism. Mol Cell Endocrinol. 2000;161:73-88.

    Google Scholar 

  61. Lobo RA. Androgens in postmenopausal women: production, possible role, and replacement options. Obstet Gynecol Surv. 2001;56:361-376.

    Google Scholar 

  62. Evans WJ, Morley JE, Argiles J, et al. Cachexia: a new definition. Clin Nutr. 2008;27:793-799.

    Google Scholar 

  63. Hein L, Barsh G, Pratt R, Dzau V. Behavioural and cardiovascular effects of disrupting the angiotensin II type-2 receptor gene in mice. Nature. 1995;377:744-747.

    Google Scholar 

  64. Garcia J, Li H, Mann D, Epner D, Hayes T. Hypogonadism in male patients with cancer. Cancer. 2006;106:2583-2591.

    Google Scholar 

  65. Skipworth RJE, Dahele M, Fearon KCH. Diseases associated with cachexia. In: Hofbauer KG, Anker SD, Inui A, Nicholson JR, ed. Pharmacotherapy of Cachexia. Boca Raton, FL: CRC Press; 2006:117-142.

    Google Scholar 

  66. Bozzetti F. Basics in Clinical Nutrition: Nutritional support in cancer. e-SPEN. 2010;5:e148-e152.

    Google Scholar 

  67. Tohgo A, Kumazawa E, Akahane K, Asakawa A, Inui A. Anticancer drugs that induce cancer-associated cachectic syndromes. Expert Rev Anticancer Ther. 2002;2:121-129.

    Google Scholar 

  68. Fearon K, Strasser F, Anker SD, et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 2011;12:489-495.

    Google Scholar 

  69. Mahmoud FA, Rivera NI. The role of C-reactive protein as a prognostic indicator in advanced cancer. Curr Oncol Rep. 2002;4:250-255.

    Google Scholar 

  70. Deans CC, Wigmore SJS. Systemic inflammation, cachexia and prognosis in patients with cancer. Curr Opin Clin Nutr Metab Care. 2005;8:265-269.

    Google Scholar 

  71. Pasceri V, Willerson JT, Yeh ET. Direct proinflammatory effect of C-reactive protein on human endothelial cells. Circulation. 2000;102:2165-2168.

    Google Scholar 

  72. Pasceri V, Cheng JS, Chang J, 5. Modulation of C-reactive protein-mediated monocyte chemoattractant protein-1 induction in human endothelial cells by anti-atherosclerosis drugs. Circulation. 2001;103:2531-2534.

    Google Scholar 

  73. Mantovani G, Anker SD, Inui A, et al. In: Mantovani G, Anker SD, Inui A, et al, eds. Cachexia and Wasting: A Modern Approach. Milano: Springer Milan; 2006:563-579.

    Google Scholar 

  74. Straus DS, Pascual G, Li M, et al. 15-deoxy-delta 12,14-prostaglandin J2 inhibits multiple steps in the NF-kappa B signaling pathway. Proc Natl Acad Sci USA. 2000;97:4844-4849.

    Google Scholar 

  75. Ghosh S, May MJ, Kopp EB. NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol. 1998;16:225-260.

    Google Scholar 

  76. Schwartz SA, Hernandez A, Mark Evers B. The role of NF-kappaB/IkappaB proteins in cancer: implications for novel treatment strategies. Surg Oncol. 1999;8:143-153.

    Google Scholar 

  77. Lawrence T, Gilroy DW, Colville-Nash PR, Willoughby DA. Possible new role for NF-kappaB in the resolution of inflammation. Nat Med. 2001;7:1291-1297.

    Google Scholar 

  78. Loewe R, Holnthoner W, Groger M, et al. Dimethylfumarate inhibits TNF-induced nuclear entry of NF-kappa B/p65 in human endothelial cells. J Immunol. 2002;168:4781-4787.

    Google Scholar 

  79. Langen RCR, Schols AMA, Janssen-Heininger YMY, 5. Inflammatory cytokines inhibit myogenic differentiation through activation of nuclear factor-kappaB. FASEB J. 2001;15:1169-1180.

    Google Scholar 

  80. Fiorentino DF, Bond MW, Mosmann TR. Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones. J Exp Med. 1989;170:2081-2095.

    Google Scholar 

  81. Groesdonk HV, Senftleben U. Modulation of inhibitor kappaB kinase/ nuclear factor kappaB signaling during critical illness: a double-edged sword. Crit Care Med. 2004;32:1239-1240.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Egidio Del Fabbro .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Healthcare

About this chapter

Cite this chapter

Del Fabbro, E., Inui, A., Strasser, F. (2012). Pathophysiology. In: Cancer Cachexia. Springer Healthcare, Tarporley. https://doi.org/10.1007/978-1-910315-07-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-910315-07-1_2

  • Published:

  • Publisher Name: Springer Healthcare, Tarporley

  • Print ISBN: 978-1-910315-06-4

  • Online ISBN: 978-1-910315-07-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics