Skip to main content

Neuroplasticity — A New Approach to the Pathophysiology of Depression

  • Chapter
Neuroplasticity

Abstract

All available antidepressive-acting molecules are based on the empirical discoveries of the clinical efficacy of two classes of compounds, the tricyclic antidepressants (TCAs) and the monoamine oxidase inhibitors, that have now been used for more than half a century. These compounds have been shown to overcome deficits in serotonin, noradrenaline and possibly dopamine function in the brain. This finding formed the basis for the monoamine hypothesis of depression [1] and subsequent monoamine receptor hypotheses proposing that depressive disorders are caused by a chemical imbalance in the brain, which can be counteracted and corrected by antidepressants. The role of monoamines has long been a central focus of research efforts, and resulted in the development of newer and more specific antidepressant agents, the monoamine reuptake inhibitors, which have the same core mechanisms of action in that they promote central monoaminergic neurotransmission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schildkraut JJ: The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry 1965; 122:509–522.

    PubMed  CAS  Google Scholar 

  2. Castren E: Is mood chemistry? Nat Rev Neurosci 2005; 6:241–246.

    Article  PubMed  CAS  Google Scholar 

  3. Duman RS, Malberg J, Thome J: Neural plasticity to stress and antidepressant treatment. Biol Psychiatry 1999; 46:1181–1191.

    Article  PubMed  CAS  Google Scholar 

  4. Manji HK, Duman RS: Impairments of neuroplasticity and cellular resilience in severe mood disorders: implications for the development of novel therapeutics. Psychopharmacol Bull 2001; 35: 5–49.

    PubMed  CAS  Google Scholar 

  5. Manji HK, Drevets WC, Charney DS: The cellular neurobiology of depression. Nat Med 2001; 7: 541–547.

    Article  PubMed  CAS  Google Scholar 

  6. Pittenger C, Duman RS: Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacology 2008; 33:88–109.

    Article  PubMed  CAS  Google Scholar 

  7. Cajal SR: Degeneration and Regeneration of the Nervous System. Oxford University Press 1928, London, p.750.

    Google Scholar 

  8. McEwen BS, Coirini H, Westlind-Danielsson A, et al.: Steroid hormones as mediators of neural plasticity. J Steroid Biochem Mol Biol 1991; 39:223–232.

    Article  PubMed  CAS  Google Scholar 

  9. Woolley CS: Effects of estrogens in the CNS. Curr Opin Neurobiol 1999; 9:349–354.

    Article  PubMed  CAS  Google Scholar 

  10. Popov VI, Bocharova LS: Hibernation-induced structural changes in synaptic contacts between mossy fibres and hippocampal pyramidal neurons. Neuroscience 1992; 48: 53–62.

    Article  PubMed  CAS  Google Scholar 

  11. Woolley CS, Gould E, McEwen BS: Exposure to excess glucocorticoids alters dendritic morphology of adult hippocampal pyramidal neurons. Brain Res 1990; 531: 225–231.

    Article  PubMed  CAS  Google Scholar 

  12. Watanabe Y, Gould E, Daniels DC, et al.: Tianeptine attenuates stress-induced morphological changes in the hippocampus. Eur J Pharmacol 1992; 222:157–162.

    Article  PubMed  CAS  Google Scholar 

  13. Magariños AM, McEwen BS, Flugge G, Fuchs E: Chronic psychosocial stress causes apical dendritic atrophy of hippocampal CA3 pyramidal neurons in subordinate tree shrews. J Neurosci 1996; 16:3534–3540.

    PubMed  Google Scholar 

  14. Sousa N, Lukoyanov NV, Madeira MD, et al.: Reorganization of the morphology of hippocampal neurites and synapses after stress-induced damage correlates with behavioral improvement. Neuroscience 2000; 97:253–266.

    Article  PubMed  CAS  Google Scholar 

  15. Perez-Cruz C, Müller-Keuker JIH, Heilbronner U, et al.: Morphology of pyramidal cells in the prefrontal cortex: lateralized dendritic remodeling by chronic restraint stress. Neural Plasticity 2007, Article ID 46276.

    Google Scholar 

  16. Perez-Cruz C, Simon M, Czéh B, et al.: Hemispheric differences in basilar dendrites and spines of pyramidal neurons in the rat prelimbic cortex: activity-and stress-induced changes. Europ J Neurosci 2009; 738–747.

    Google Scholar 

  17. Vyas A, Mitra R, Shankaranarayana Rao BS, Chattarji S: Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons: J Neurosci 2002; 22: 6810–6818.

    PubMed  CAS  Google Scholar 

  18. Sheline YI, Gado MH, Kraemer HC: Untreated depression and hippocampal volume loss. Am J Psychiatry 2003; 160:1516–1518.

    Article  PubMed  Google Scholar 

  19. Czéh B, Lucassen PJ: What causes the hippocampal volume decrease in depression? Are neurogenesis, glial changes and apoptosis implicated? Eur Arch Psychiatry Clin Neurosci 2007; 257:250–260.

    Article  PubMed  Google Scholar 

  20. Reif A, Fritzen S, Finger M, et al.: Neural stem cell proliferation is decreased in schizophrenia, but not in depression. Mol Psychiatry 2006; 11:514–522.

    Article  PubMed  CAS  Google Scholar 

  21. Fuchs E, Czéh B, Kole MH, et al.: Alterations of neuroplasticity in depression: the hippocampus and beyond. Eur Neuropsychopharmacol 2004; 14Suppl 5:S481–S490.

    Article  PubMed  CAS  Google Scholar 

  22. Dranovsky A, Hen R: Hippocampal neurogenesis: regulation by stress and antidepressants. Biol Psychiatry 2006; 59:1136–1143.

    Article  PubMed  CAS  Google Scholar 

  23. Drevets WC: Neuroimaging abnormalities in the amygdala in mood disorders. Ann NY Acad Sci 2003; 985:420–444.

    Article  PubMed  Google Scholar 

  24. Sheline YI, Gado MH, Price JL: Amygdala core nuclei volumes are decreased in recurrent major depression. Neuroreport 1998; 9:2023–2028.

    Article  PubMed  CAS  Google Scholar 

  25. Bremner JD, Narayan M, Anderson ER, et al.: Hippocampal volume reduction in major depression. Am J Psychiatry 2000; 157:115–118.

    Article  PubMed  CAS  Google Scholar 

  26. Bowley MP, Drevets WC, Ongur D, Price JL: Low glial numbers in the amygdala in major depressive disorder. Biol Psychiatry 2002; 52:404–412.

    Article  PubMed  Google Scholar 

  27. Cotter D, Mackay D, Chana G, et al.: Reduced neuronal size and glial cell density in area 9 of the dorsolateral prefrontal cortex in subjects with major depressive disorder. Cereb Cortex 2002; 12:386–394.

    Article  PubMed  Google Scholar 

  28. Rajkowska G, Miguel-Hidalgo JJ, Wei J, et al.: Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol Psychiatry 1999; 45:1085–1098.

    Article  PubMed  CAS  Google Scholar 

  29. Rocher C, Spedding M, Munoz C, Jay TM: Acute stress-induced changes in hippocampal/prefrontal circuits in rats: effects of antidepressants. Cereb Cortex 2004; 14:224–229.

    Article  PubMed  Google Scholar 

  30. Czéh B, Muller-Keuker JI, Rygula R, et al.: Chronic social stress inhibits cell proliferation in the adult medial prefrontal cortex: hemispheric asymmetry and reversal by fluoxetine treatment. Neuropsychopharmacology 2007; 32:1490–1503.

    Article  PubMed  Google Scholar 

  31. Cooper B, Fuchs E, Flügge G: Expression of the axonal membrane glycoprotein M6a is regulated by chronic stress. PloSOne 2009; 4:e3659.

    Google Scholar 

  32. Alfonso J, Pollevick GD, Van Der Hart MG, et al.: Identification of genes regulated by chronic psychosocial stress and antidepressant treatment in the hippocampus. Eur J Neurosci 2004; 19:659–666.

    Article  PubMed  Google Scholar 

  33. Coyle JT, Schwarcz R: Mind glue: implications of glial cell biology for psychiatry. Arch Gen Psychiatry 2000; 57: 90–93.

    Article  PubMed  CAS  Google Scholar 

  34. Cotter DR, Pariante CM, Everall IP: Glial cell abnormalities in major psychiatric disorders: the evidence and implications. Brain Res Bull 2001; 55:585–595.

    Article  PubMed  CAS  Google Scholar 

  35. Czeh B, Simon M, Schmelting B, et al.: Astroglial plasticity in the hippocampus is affected by chronic psychosocial stress and concomitant fluoxetine treatment. Neuropsychopharmacology 2006; 31:1616–1626.

    Article  PubMed  CAS  Google Scholar 

  36. Reagan LP, Rosell DR, Wood GE, et al.: Chronic restraint stress upregulates GLT-1mRNA and protein expression in the rat hippocampus: reversal by tianeptine. Proc Natl Acad Sci USA 2004; 101:2179–2184.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

J. A. Costa e Silva J. P. Macher J. P. Olié

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Healthcare, a part of Springer Science+Business Media

About this chapter

Cite this chapter

Fuchs, E. (2011). Neuroplasticity — A New Approach to the Pathophysiology of Depression. In: Costa e Silva, J.A., Macher, J.P., Olié, J.P. (eds) Neuroplasticity. Springer, Tarporley. https://doi.org/10.1007/978-1-908517-18-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-908517-18-0_1

  • Publisher Name: Springer, Tarporley

  • Print ISBN: 978-1-85873-437-8

  • Online ISBN: 978-1-908517-18-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics