Skip to main content

HER2-Positive Metastatic Breast Cancer: Second-Line Treatment

  • Chapter
  • First Online:
Book cover Handbook of HER2-targeted agents in breast cancer
  • 555 Accesses

Abstract

The human epidermal growth factor receptor 2 (HER2) is a transmembrane tyrosine kinase that is overexpressed in approximately 20 % of invasive breast cancers, primarily due to gene amplification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. King CR, Kraus MH, Aaronson SA. Amplification of a novel v-erbB-related gene in a human mammary carcinoma. Science. 1985;229:974-976.

    Google Scholar 

  2. Nahta R, Esteva FJ. Trastuzumab: triumphs and tribulations. Oncogene. 2007;26:3637-3643.

    Google Scholar 

  3. Tykerb [prescribing information]. Research Triangle Park, NC: GlaxoSmithKline; 2013.

    Google Scholar 

  4. Baselga J, Cortes J, Kim S-B, et al; for the CLEOPATRA Study Group. Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med. 2012;366:109-119.

    Google Scholar 

  5. Perjeta [prescribing information]. South San Francisco, CA: Genentech, Inc.; 2012.

    Google Scholar 

  6. Verma S, Miles D, Gianni L, et al; for the EMILIA Study Group. Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med. 2012;367:1783-1791.

    Google Scholar 

  7. Kadcyla [prescribing information]. South San Francisco, CA: Genentech, Inc.; 2013.

    Google Scholar 

  8. Carter PJ. Potent antibody therapeutics by design. Nat Rev Immunol. 2006;6:343-357.

    Google Scholar 

  9. Easton DF, Pooley KA, Dunning AM, et al. Genome-wide association study identifies novel breast cancer susceptibility loci. Nature. 2007;447:1087-1093.

    Google Scholar 

  10. Wu AM, Senter PD. Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol. 2005;23:1137-1146.

    Google Scholar 

  11. Smith I, Procter M, Gelber RD, et al; for the HERA study team. 2-year follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer: a randomised controlled trial. Lancet. 2007;369:29-36.

    Google Scholar 

  12. Li J, Glencer A, Lugo HS. T-DM1: a novel and effective immunoconjugate for the treatment of HER2 + breast cancer. The International Journal of Targeted Therapies in Cancer website. www.targetedonc.com/publications/targeted-therapies-cancer/2012/november-2012/TDM1- A-Novel-and-Effective-Immunoconjugate-for-the-Treatment-of-HER2-Breast-Cancer. Accessed November 19, 2013.

  13. Romond EH, Perez EA, Bryant J, et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med. 2005;353:1673-1684.

    Google Scholar 

  14. Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344:783-792.

    Google Scholar 

  15. Junttila TT, Akita RW, Parsons K, et al. Ligand-independent HER2/HER3/PI3 K complex is disrupted by trastuzumab and is effectively inhibited by the PI3 K inhibitor GDC-0941. Cancer Cell. 2009;15:429-440.

    Google Scholar 

  16. Albanell J, Codony J, Rovira A, Mellado B, Gascon P. Mechanism of action of anti-HER2 monoclonal antibodies: scientific update on trastuzumab and 2C4. In: Llombart- Bosch A, Felipo V, eds. New Trends in Cancer for the 21st Century. New York, NY: Springer Science + Business Media; 2003:253-268.

    Google Scholar 

  17. Molina MA, Codony-Servat J, Albanell J, Rojo F, Arribas J, Baselga J. Trastuzumab (Herceptin), a humanized anti-Her2 receptor monoclonal antibody, inhibits basal and activated Her2 ectodomain cleavage in breast cancer cells. Cancer Res. 2001;61:4744-4749.

    Google Scholar 

  18. Izumi Y, Xu L, di Tomaso E, Fukumura D, Jain RK. Tumour biology: Herceptin acts as an antiangiogenic cocktail. Nature. 2002;416:279-280.

    Google Scholar 

  19. Clynes RA, Towers TL, Presta LG, Ravetch JV. Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat Med. 2000;6:443-446.

    Google Scholar 

  20. Cooley S, Burns LJ, Repka T, Miller JS. Natural killer cell cytotoxicity of breast cancer targets is enhanced by two distinct mechanisms of antibody-dependent cellular cytotoxicity against LFA-3 and HER2/neu. Exp Hematol. 1999;27:1533-1541.

    Google Scholar 

  21. Mohsin SK, Weiss HL, Gutierrez MC, et al. Neoadjuvant trastuzumab induces apoptosis in primary breast cancers. J Clin Oncol. 2005;23:2460-2468.

    Google Scholar 

  22. Dillman RO, Johnson DE, Shawler DL, Koziol JA. Superiority of an acid-labile daunorubicinmonoclonal antibody immunoconjugate compared to free drug. Cancer Res. 1988;48:6097- 6102.

    Google Scholar 

  23. Johnson DA, Laguzza BC. Antitumor xenograft activity with a conjugate of a Vinca derivative and the squamous carcinoma-reactive monoclonal antibody PF1/D. Cancer Res. 1987;47:3118-3122.

    Google Scholar 

  24. Shen W-C, Ballou B, Ryser HJ-P, Hakala TR. Targeting, internalization, and cytotoxicity of methotrexate-monoclonal anti-stage-specific embryonic antigen-1 antibody conjugates in cultured F-9 teratocarcinoma cells. Cancer Res. 1986;46:3912-3916.

    Google Scholar 

  25. Allen TM. Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer. 2002;2:750- 763.

    Google Scholar 

  26. Cassady JM, Chan KK, Floss HG, Leistner E. Recent developments in the maytansinoid antitumor agents. Chem Pharm Bull (Tokyo). 2004;52:1-26.

    Google Scholar 

  27. Blum RH, Kahlert T. Maytansine: a phase I study of an ansa macrolide with antitumor activity. Cancer Treat Rep. 1978;62:435-438.

    Google Scholar 

  28. Cabanillas F, Rodriguez V, Hall SW, Burgess MA, Bodey GP, Freireich EJ. Phase I study of maytansine using a 3-day schedule. Cancer Treat Rep. 1978;62:425-428.

    Google Scholar 

  29. Chabner BA, Levine AS, Johnson BL, Young RC. Initial clinical trials of maytansine, an antitumor plant alkaloid. Cancer Treat Rep. 1978;62:429-433.

    Google Scholar 

  30. Chari RVJ. Targeted delivery of chemotherapeutics: tumor-activated prodrug therapy. Adv Drug Deliv Rev. 1998;31:89-104.

    Google Scholar 

  31. Chari RVJ, Martell BA, Gross JL, et al. Immunoconjugates containing novel maytansinoids: promising anticancer drugs. Cancer Res. 1992;52:127-131.

    Google Scholar 

  32. Burris HA III. Trastuzumab emtansine (T-DM1): hitching a ride on a therapeutic antibody. ASCO 2012 Educational Book. ASCO website. www.meetinglibrary.asco.org/sites/ meetinglibrary.asco.org/files/EducationalBook/PDFFiles/2012/zds00112000159.pdf. Accessed November 19, 2013.

  33. Singh R, Erickson HK. Antibody–cytotoxic agent conjugates: preparation and execution. In: Dimitrov AS, ed. Therapeutic Antibodies: Methods and Protocols. New York, NY: Humana Press (Springer Science + Business Media); 2009:445-467.

    Google Scholar 

  34. Erickson HK, Park PU, Widdison WC, et al. Antibody-maytansinoid conjugates are activated in targeted cancer cells by lysomal degredation and linker-dependent intracellular processing. Cancer Res. 2006;66:4426-4433.

    Google Scholar 

  35. Lewis Phillips GD, Li G, Dugger DL, et al. Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res. 2008;68:9280-9290.

    Google Scholar 

  36. Krop IE, Beeram M, Modi S, et al. Phase I study of trastuzumab-DM1, an HER2 antibody-drug conjugate, given every 3 weeks to patients with HER2-positive metastatic breast cancer. J Clin Oncol. 2010;28:2698-2704.

    Google Scholar 

  37. Burris HA III, Rugo HS, Vukelja SJ, et al. Phase II study of the antibody drug conjugate trastuzumab-DM1 for the treatment of human epidermal growth factor receptor 2 (HER2)- positive breast cancer after prior HER2-directed therapy. J Clin Oncol. 2011;29:398-405.

    Google Scholar 

  38. Krop IE, LoRusso P, Miller KD, et al. A phase II study of trastuzumab emtansine in patients with human epidermal growth factor receptor 2–positive metastatic breast cancer who were previously treated with trastuzumab, lapatinib, an anthracycline, a taxane, and capecitabine. J Clin Oncol. 2012;30:3234-3241.

    Google Scholar 

  39. A study of trastuzumab emtansine (T-DM1) plus pertuzumab/pertuzumab placebo versus trastuzumab (Herceptin) plus a taxane in patients with metastatic breast cancer (MARIANNE). ClinicalTrials.gov website. www.clinicaltrials.gov/ct2/show/NCT01120184. Accessed November 19, 2013.

  40. A study of trastuzumab emtansine in comparison with treatment of physician’s choice in patients with HER2-positive breast cancer who have received at least two prior regimens of HER2-directed therapy (TH3RESA). ClinicalTrials.gov website. www.clinicaltrials.gov/ct2/ show/NCT01419197. Accessed November 19, 2013.

  41. Wildiers H, Kim SB, Gonzalez-Martin A, et al. Late Breaking Abstract: T-DM1 for HER2- positive metastatic breast cancer (MBC): Primary results from TH3RESA, a phase 3 study of T-DM1 vs treatment of physician’s choice. Presented at: European Cancer Congress (ECCO); September 27- Oct 1, 2013: Amsterdam, Netherlands. Abstract 15.

    Google Scholar 

  42. Spector NL, Xia W, Burris HL III, et al. Study of the biologic effects of lapatinib, a reversible inhibitor of ErbB1 and ErbB2 tyrosine kinases, on tumor growth and survival pathways in patients with advanced malignancies. J Clin Oncol. 2005;23:2502-2512.

    Google Scholar 

  43. Rusnak DW, Lackey K, Affleck K, et al. The effects of the novel, reversible epidermal growth factor receptor/ErbB-2 tyrosine kinase inhibitor, GW2016, on the growth of human normal and tumor-derived cell lines in vitro and in vivo. Mol Cancer Ther. 2001;1:85-94.

    Google Scholar 

  44. Xia W, Mullin RJ, Keith BR, et al. Anti-tumor activity of GW572016: a dual tyrosine kinase inhibitor blocks EGF activation of EGFR/erbB2 and downstream Erk1/2 and AKT pathways. Oncogene. 2002;21:6255-6263.

    Google Scholar 

  45. Konecny GE, Pegram MD, Venkatesan N, et al. Activity of the dual kinase inhibitor lapatinib (GW572016) against HER-2-overexpressing and trastuzumab-treated breast cancer cells. Cancer Res. 2006;66:1630-1639.

    Google Scholar 

  46. Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol. 2001;2:127-137.

    Google Scholar 

  47. Olayioye MA, Graus-Porta D, Beerli RR, Rohrer J, Gay B, Hynes NE. ErbB-1 and ErbB-2 acquire distinct signaling properties dependent on their dimerization partner. Mol Cell Biol. 1998;18:5042-5051.

    Google Scholar 

  48. Burris HA III, Hurwitz HI, Dees EC, et al. Phase I safety, pharmacokinetics, and clinical activity study of lapatinib (GW572016), a reversible dual inhibitor of epidermal growth factor receptor tyrosine kinases, in heavily pretreated patients with metastatic carcinomas. J Clin Oncol. 2005;23:5305-5313.

    Google Scholar 

  49. Blackwell KL, Pegram MD, Tan-Chiu E, et al. Single-agent lapatinib for HER2-overexpressing advanced or metastatic breast cancer that progressed on first- or second-line trastuzumabcontaining regimens. Ann Oncol. 2009;20:1026-1031.

    Google Scholar 

  50. Geyer CE, Forster J, Lindquist D, et al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med. 2006;355:2733-2743.

    Google Scholar 

  51. Cameron D, Casey M, Press M, et al. A phase III randomized comparison of lapatinib plus capecitabine versus capecitabine alone in women with advanced breast cancer that has progressed on trastuzumab: updated efficacy and biomarker analyses. Breast Cancer Res Treat. 2008;112:533-543.

    Google Scholar 

  52. Cameron D, Casey M, Oliva C, Newstat B, Imwalle B, Geyer CE. Lapatinib plus capecitabine in women with HER-2–positive advanced breast cancer: final survival analysis of a phase III randomized trial. Oncologist. 2010;15:924-934.

    Google Scholar 

  53. Zardavas D, Cameron D, Krop I, Piccart M. Beyond trastuzumab and lapatinib: new options for HER2-positive breast cancer. ASCO 2013 Educational Book. ASCO website. meetinglibrary. asco.org/sites/meetinglibrary.asco.org/files/Educational%20Book/PDF%20Files/2013/ EdBookAM201333e2.pdf. Accessed November 19, 2013.

    Google Scholar 

  54. Scaltriti M, Verma C, Guzman M, et al. Lapatinib, a HER2 tyrosine kinase inhibitor, induces stabilization and accumulation of HER2 and potentiates trastuzumab-dependent cell cytotoxicity. Oncogene. 2009;28:803-814.

    Google Scholar 

  55. Xia W, Gerard CM, Liu L, Baudson NM, Ory TL, Spector NL. Combining lapatinib (GW572016), a small molecule inhibitor of ErbB1 and ErbB2 tyrosine kinases, with therapeutic anti-ErbB2 antibodies enhances apoptosis of ErbB2-overexpressing breast cancer cells. Oncogene. 2005;24:6213-6221.

    Google Scholar 

  56. Blackwell KL, Burstein HJ, Storniolo AM, et al. Overall survival benefit with lapatinib in combination with trastuzumab for patients with human epidermal growth factor receptor 2-positive metastatic breast cancer: final results from the EGF104900 study. J Clin Oncol. 2012;30:2585-2592.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Healthcare

About this chapter

Cite this chapter

Alvarez, R.H. (2013). HER2-Positive Metastatic Breast Cancer: Second-Line Treatment. In: Handbook of HER2-targeted agents in breast cancer. Springer Healthcare, Tarporley. https://doi.org/10.1007/978-1-907673-94-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-907673-94-8_5

  • Published:

  • Publisher Name: Springer Healthcare, Tarporley

  • Print ISBN: 978-1-907673-93-1

  • Online ISBN: 978-1-907673-94-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics