Skip to main content

Part of the book series: Meteorological Monographs ((METEOR))

Abstract

In this work the longstanding question of the connections between raindrop-size distributions (RDSDs) and radar reflectivity-rainfall rate (Z-R) relationships is revisited, this time from the combined approach of rain-forming physical processes that shape the RDSD, and a formulation of the RDSD into the simplest free parameters of the rain intensity R, rainwater content W, and median volume drop diameter D0. This is accomplished through a theoretical analysis, using a gamma RDSD, of D0-R and W-R relations implied by the coefficients and exponents in empirical Z-R relations. The results provide a means by which these Z-R relations can be classified. The most dramatic of these classifications involves the relation between D0 and W, which shows a remarkable ordering with the rain types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atlas, D., 1955: The radar measurement of precipitation growth. Ph.D. thesis, Massachusetts Institute of Technology, 239 pp.

    Google Scholar 

  • Atlas, D., 1964: Advances in radar meteorology. Advances in Geophysics, Vol. 10, Academic Press, 317–478.

    Google Scholar 

  • Atlas, D., and A. C. Chmela, 1957: Physical-synoptic variations of dropsize parameters. Proc. Sixth Weather Radar Conf., Cambridge, MA, Amer. Meteor. Soc., 21–29.

    Google Scholar 

  • Atlas, D., and C. W. Ulbrich, 1977: Path-and area-integrated rainfall measurement by microwave attenuation in the 1–3 cm band. J. Appl. Meteor., 16, 1322–1331.

    Article  Google Scholar 

  • Atlas, D., and, 2000: An observationally based conceptual model of warm oceanic convective rain in the Tropics. J. Appl Meteor., 39, 2165–2181.

    Article  Google Scholar 

  • Atlas, D., F. D. Marks Jr., E. Amitai, and C. R. Williams, 1999: Systematic variation of drop size and radar-rainfall relations. J. Geophys. Res., 104, 6155–6169.

    Article  Google Scholar 

  • Atlas, D., R. A. Black, E. Amitai, P. T. Willis, and C. E. Samsury, 2000: Partitioning tropical oceanic and stratiform rains by draft strength. J. Geophys. Res., 105, 2259–2267.

    Article  Google Scholar 

  • Best, A. C., 1950: The size distribution of raindrops. Quart. J. Roy. Meteor. Soc., 76, 16–36.

    Article  Google Scholar 

  • Black, R. A., and J. Hallett, 1986: Observations of the distribution of ice in hurricanes. J. Atmos. Sei., 43, 802–822.

    Article  Google Scholar 

  • Blanchard, D. C., 1953: Raindrop size-distribution in Hawaiian rains. J. Meteor., 10, 457–473.

    Article  Google Scholar 

  • Bradley, S. G., and C. D. Stow, 1974: The measurement of charge and size of raindrops: Part II. Results and analysis at ground level. J. Appl. Meteor., 13, 131–147.

    Article  Google Scholar 

  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetrie Doppler Weather Radar.Cambridge University Press, 636 pp.

    Google Scholar 

  • Bringi, V. N., J. Hubbert, E. Gorgucci, W. L. Randeau, and M. Schoenhuber, 2003: Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J. Atmos. Sei., 60, 354–365.

    Article  Google Scholar 

  • Brown, P. S., Jr., 1989: Coalescence and breakup-induced oscillations in the evolution of the raindrop size distribution. J. Atmos. Sei., 46, 1186–1192.

    Article  Google Scholar 

  • Carbone, R. E., and L. D. Nelson, 1978: The evolution of raindrop spectra in warm-based convective storms as observed and numerically modeled. J. Atmos. Sei., 35, 2302–2314.

    Article  Google Scholar 

  • Cataneo, R., and G. E. Stout, 1968: Raindrop-size distributions in humid continental climates, and associated rainfall rate-radar reflectivity relationships. J. Appl. Meteor., 7, 901–907.

    Article  Google Scholar 

  • Caton, P. G. F., 1966: A study of raindrop size distributions in the free atmosphere. Quart. J. Roy. Meteor. Soc., 92, 15–30.

    Article  Google Scholar 

  • Chandrasekar, V., and V. N. Bringi, 1987: Simulation of radar reflectivity and surface measurements of rainfall. J. Atmos. Oceanic Technol., 4, 464–478.

    Article  Google Scholar 

  • Chandrasekar, V., R. Meneghini, and I. Zawadzki, 2003: Global and local precipitation measurements by radar. Radar and Atmospheric Science: A Collection of Essays in Honor of David Atlas,Meteor. Monogr., No. 52, Amer. Meteor. Soc., 215–236.

    Google Scholar 

  • Churchill, D. D., and R. A. Houze Jr., 1984: Development and structure of winter monsoon cloud clusters on 10 December 1978. J. Atmos. Sei., 41, 933–960.

    Article  Google Scholar 

  • de Beauville, C. A., R. H. Petit, G. Marion, and J. P. Lacaux, 1988: Evolution of peaks in the spectral distribution of raindrops from warm isolated maritime clouds. J. Atmos. Sei., 45, 3320–3332.

    Article  Google Scholar 

  • Deirmendjian, D., 1969: Electromagnetic Scattering on Spherical Polydispersions. Elsevier, 290 pp.

    Google Scholar 

  • Dingle, A. N., and K. R. Hardy, 1962: The description of rain by means of sequential rain-drop size distributions. Quart. J. Roy. Meteor. Soc., 88, 301–314.

    Article  Google Scholar 

  • Donaldson, N. R., 1984: Raindrop evolution with collisional breakup: Theory and models. Ph.D. thesis, University of Toronto, 181 pp.

    Google Scholar 

  • Foote, G. B., 1966: A Z-R relation for mountain thunderstorms. J. Appl. Meteor., 5, 229–231.

    Article  Google Scholar 

  • Fujiwara, M., 1965: Raindrop-size distribution from individual storms. J. Atmos. Sei., 22, 585–591.

    Article  Google Scholar 

  • Fujiwara, M., and T. Yanase, 1968: Raindrop Z-R relationships in different altitudes. Proc. 13th Radar Meteorology Conf, Montreal, QC, Canada, Amer. Meteor. Soc., 380–383.

    Google Scholar 

  • Haddad, Z. S., S. L. Durden, and E. Im, 1996: Parameterizing the raindrop size distribution. J. Appl. Meteor., 35, 3–13.

    Article  Google Scholar 

  • Houze, R. A., Jr., 1989: Observed structure of mesoscale convective systems and implications for large scale heating. Quart. J. Roy. Meteor. Soc., 115, 425–461.

    Article  Google Scholar 

  • Hu, Z., and R. Srivastava, 1995: Evolution of the raindrop size distribution by coalescence, breakup, and evaporation: Theory and observations. J. Atmos. Sei., 52, 1761–1783.

    Article  Google Scholar 

  • Huggel, A., W. Schmid, and A. Waldvogel, 1996: Raindrop size distributions and the radar bright band. J. Appl. Meteor., 35, 1688–1701.

    Article  Google Scholar 

  • Iguchi, Т., T. Kozu, R. Meneghini, J. Awaka, and K. Okamoto, 2000: Rain-profiling algorithm for the TRMM precipitation radar. J. Appl. Meteor., 39, 2038–2052.

    Article  Google Scholar 

  • Imai, I., 1964: A fitting equation for raindrop-size distributions in various weather situations. Proc. World Conf. on Radio Meteorology and 11th Weather Radar Conf, Boulder, CO, Amer. Meteor. Soc., 149A - 149D.

    Google Scholar 

  • Jorgensen, D. P., and P. T. Willis, 1982: A Z-R relationship for hurricanes. J. Appl. Meteor., 21, 356–366.

    Article  Google Scholar 

  • Jorgensen, D. P., and M. A. LeMone, 1989: Vertical velocity characteristics of oceanic convection. J. Atmos. Sei., 46, 621–640.

    Article  Google Scholar 

  • Joss, J., and A. Waldvogel, 1970: A method to improve the accuracy of radar measured amounts of precipitation. Preprints, 14th Radar Meteorology Conf, Tucson, AZ, Amer. Meteor. Soc., 237–238.

    Google Scholar 

  • Joss, J., and E. G. Gori, 1978: Shapes of raindrop size distributions. J. Appl. Meteor., 17, 1054–1061.

    Article  Google Scholar 

  • Keenan, T. D., L. D. Carey, D. S. Zrnic, and P. T. May, 2001: Sensitivity of 5-cm wavelength polarimetric radar variables to raindrop axial ratio and drop size distribution. J. Appl. Meteor., 40, 526–545.

    Article  Google Scholar 

  • Laws, J. O., and D. A. Parsons, 1943: The relation of raindrop-size to intensity. Trans. Amer. Geophys. Union, 24, 452–460.

    Article  Google Scholar 

  • Levin, L. M., 1954: On the size distribution function for cloud droplets and rain drops. Dokl. Akad. Nauk SSSR, 94, 1045–1053.

    Google Scholar 

  • Levin, Z., G. Feingold, S. Tzivion, and A. Waldvogel, 1991: The evolution of raindrop spectra: Comparisons between modeled and observed spectra along a mountain slope in Switzerland. J. Appl. Meteor., 30, 893–900.

    Article  Google Scholar 

  • List, R., 1988: A linear radar reflectivity-rain-rate relationship for steady tropical rain. J. Atmos. Sei., 45, 3564–3572.

    Article  Google Scholar 

  • List, R., Т. B. Low, N. Donaldson, E. Freire, and J. R. Gillespie, 1987: Temporal evolution of drop spectra to collisional equilibrium in steady and pulsating rain. J. Atmos. Sei., 44, 362–372.

    Article  Google Scholar 

  • Maki, M., T. D. Keenan, Y. Sasaki, and К. Nakamura, 2001: Characteristics of the raindrop size distribution in tropical continental squall lines observed in Darwin, Australia. J. Appl. Meteor., 40, 1393–1412.

    Article  Google Scholar 

  • Markowitz, A. H., 1976: Raindrop size distribution expressions. J. Appl. Meteor., 15, 1029–1031.

    Article  Google Scholar 

  • Marshall, J. S., and W. McK. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5, 165–166.

    Article  Google Scholar 

  • Marshall, J. S., R. C. Langille, and W. McK. Palmer, 1947: Measurement of rainfall by radar. J. Meteor., 4, 186–192.

    Article  Google Scholar 

  • Mueller, E. A., 1965: Radar rainfall studies. Ph.D. dissertation, University of Illinois at Urbana-Champaign, 89 pp.

    Google Scholar 

  • Mueller, E. A., and A. L. Sims, 1966: Radar cross sections from drop size spectra. Tech. Rep. ECOM-00032-F, Contract DA-28–043 AMC-00032(E), Illinois State Water Survey, Urbana, Illinois, 110 pp.

    Google Scholar 

  • Orville, R. E., and R. W. Henderson, 1986: Global distribution of midnight lightning: September 1977 to August 1978. Mon. Wea. Rev., 114, 2640–2653.

    Article  Google Scholar 

  • Petrocchi, P. J., and K. J. Banis, 1980: Computer analysis of raindrop disdrometers’ spectral data acquired during the 1979 SESAME project. Preprints, 19th Conf. on Radar Meteorology, Miami Beach, FL, Amer. Meteor. Soc., 490–492.

    Google Scholar 

  • Rogers, R. R., and R. J. Pilié, 1962: Radar measurements of drop size distribution. J. Atmos. Sei., 19, 503–506.

    Article  Google Scholar 

  • Rosenfeld, D., and I. M. Lensky, 1998: Spaceborne sensed insights into precipitation formation processes in continental and maritime clouds. Bull. Amer. Meteor. Soc., 79, 2457–2476.

    Article  Google Scholar 

  • Rutledge, S. A., E. R. Williams, and T. D. Keenan, 1992: The Down Under Doppler and Electricity Experiment (DUNDEE): Overview and preliminary results. Bull. Amer. Meteor. Soc., 73, 3–16.

    Article  Google Scholar 

  • Sauvageot, H., 1994: Rainfall measurement by radar: A review. Atmos. Res., 35, 27–54.

    Article  Google Scholar 

  • Sauvageot, H., and J.-P. Lacaux, 1995: The shape of averaged drop size distributions. J. Atmos. Sei., 52, 1070–1083.

    Article  Google Scholar 

  • Seliga, T. A., and V. N. Bringi, 1976: Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation. J. Appl. Meteor., 15, 69–76.

    Article  Google Scholar 

  • Sims, A. L., 1964: Case studies of the areal variations in raindrop size distributions. Proc. World Conf. on Radio Meteorology and 11th Weather Radar Conf., Boulder, CO, Amer. Meteor. Soc., 162–165.

    Google Scholar 

  • Srivastava, R. C., 1971: Size distribution of raindrops generated by their breakup and coalescence. J. Atmos. Sei., 28, 410–415.

    Article  Google Scholar 

  • Steiner, M., and A. Waldvogel, 1987: Peaks in raindrop size distributions. J. Atmos. Sei., 44, 3127–3133.

    Article  Google Scholar 

  • Stewart, R. E., J. D. Marwitz, J. C. Pace, and R. E. Carbone, 1984: Characteristics through the melting layer of stratiform clouds. J. Atmos. Sei., 41, 3227–3237.

    Article  Google Scholar 

  • Stout, G. E., and E. A. Mueller, 1968: Survey of relationships between rainfall rate and radar reflectivity in the measurement of precipitation. J. Appl. Meteor., 7, 465–474.

    Article  Google Scholar 

  • Testud, J., S. Oury, R. A. Black, P. Amayenc, and X. Dou, 2001: The concept of “normalized” distributions to describe raindrop spectra: A tool for cloud physics and cloud remote sensing. J. Appl. Meteor., 40, 1118–1140.

    Article  Google Scholar 

  • Tokay, A., and D. A. Short, 1996: Evidence from tropical raindrop spectra of the origin of rain from stratiform and convective clouds. J. Appl. Meteor., 35, 355–371.

    Article  Google Scholar 

  • Tokay, A., and B. Fisher, 1995: Convective vs. stratiform precipitation classification from surface measured drop size distributions at Darwin, Australia and Kapingamarangi atoll. Preprints, 27th Conf. on Radar Meteorology, Vail, CO, Amer. Meteor. Soc., 690–693.

    Google Scholar 

  • Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteor., 22, 1764–1775.

    Article  Google Scholar 

  • Ulbrich, C. W., 1985: The effects of drop size distribution truncation on rainfall integral parameters and empirical relations. J. Climate Appl. Meteor., 24, 580–590.

    Article  Google Scholar 

  • Ulbrich, C. W., 1992: Effects of drop size distribution truncation on computer simulations of dual-measurement radar methods. J. Appl. Meteor., 31, 689–699.

    Article  Google Scholar 

  • Ulbrich, C. W., 1993: Corrections to empirical relations derived from rainfall disdrometer data for effects due to drop size distribution truncation. Atmos. Res., 34, 207–215.

    Article  Google Scholar 

  • Ulbrich, C. W., and D. Atlas, 1978: The rain parameter diagram: Methods and applications. J. Geophys. Res., 83C 1319–1325.

    Article  Google Scholar 

  • Ulbrich, C. W., and, 1998: Rainfall microphysics and radar properties: Analysis methods for drop size spectra. J. Appl. Meteor., 37, 912–923.

    Google Scholar 

  • Ulbrich, C. W., and, 2002: On the separation of tropical convective and stratiform rains. J. Appl. Meteor., 41, 188–195.

    Google Scholar 

  • Ulbrich, C. W., M. Petitdidier, and E. F. Campos, 1999: Radar properties of tropical rain found from disdrometer data at Arecibo, PR. Preprints, 29th Int. Conf. on Radar Meteorology, Montreal, QC, Canada, Amer. Meteor. Soc., 676–679.

    Google Scholar 

  • Valdez, M. P., and K. C. Young, 1985: Number fluxes in equilibrium raindrop populations: A Markov chain analysis. J. Atmos. Sei., 42, 1024–1036.

    Article  Google Scholar 

  • Waldvogel, A., 1974: The N0 jump of raindrop spectra. J. Atmos. Sei., 31, 1067–1078.

    Article  Google Scholar 

  • Williams, E. R., S. A. Rutledge, S. G. Geotis, N. Renno, E. Rasmussen, and T. Rickenbach, 1992: A radar and electrical study of tropical “hot towers.” J. Atmos. Sei., 49, 1386–1395.

    Article  Google Scholar 

  • Williams, E. R., and Coauthors, 2002: Contrasting convective regimes over the Amazon: Implications for cloud electrification. J. Geophys. Res., 107, doi: 10.1029/2001ID000380

  • Willis, P. Т., 1984: Functional fits to some observed drop size distributions and parameterization of rain. J. Atmos. Sei., 41, 1648–1661.

    Article  Google Scholar 

  • Wilson, J. W., and E. A. Brandes, 1979: Radar measurement of rainfall-A summary. Bull. Amer. Meteor. Soc., 60, 1048–1058.

    Article  Google Scholar 

  • Zawadzki, I., and M. de Agostinho Antonio, 1988: Equilibrium raindrop size distributions in tropical rain. J. Atmos. Sei., 45, 3452–3459.

    Article  Google Scholar 

  • Zhang, G., J. Vivekanandan, and E. Brandes, 2001: A method for estimating rain rate and drop size distribution from polarimetric radar measurements. IEEE Trans. Geosci. Remote Sens., 39, 830–841.

    Article  Google Scholar 

  • Zipser, E. J., 1994: Deep cumulonimbus cloud systems in the Tropics with and without lightning. Mon. Wea. Rev., 122, 1837–1851.

    Article  Google Scholar 

  • Zipser, E. J., and M. A. LeMone, 1980: Cumulonimbus vertical velocity events in GATE. Part II: Synthesis and model core structure. J. Atmos. Sei., 37, 2458–2469.

    Article  Google Scholar 

  • Zipser, E. J., and K. Lutz, 1994: The vertical profile of radar reflectivity of convective cells: A strong indicator of storm intensity and lightning probability. Mon. Wea. Rev., 122, 1751–1759.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 American Meteorological Society

About this chapter

Cite this chapter

Rosenfeld, D., Ulbrich, C.W. (2003). Cloud Microphysical Properties, Processes, and Rainfall Estimation Opportunities. In: Wakimoto, R.M., Srivastava, R. (eds) Radar and Atmospheric Science: A Collection of Essays in Honor of David Atlas. Meteorological Monographs. American Meteorological Society, Boston, MA. https://doi.org/10.1007/978-1-878220-36-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-878220-36-3_10

  • Publisher Name: American Meteorological Society, Boston, MA

  • Online ISBN: 978-1-878220-36-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics