Skip to main content

Parametric Versus Nonparametric Approach to Wiener Systems Identification

  • Chapter
Block-oriented Nonlinear System Identification

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 404))

Abstract

The problem of nonlinear dynamic systems modelling by means of block-oriented models has been strongly elaborated for the last four decades, due to vast variety of applications. The concept of block-oriented models assumes that the real plant, as a whole, can be treated as a system of interconnected blocks, static nonlinearities (N) and linear dynamics (L), where the interaction signals cannot be measured.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bai, E.W.: A blind approach to Hammerstein–Wiener model identification. Automatica 38, 969–979 (2002)

    Google Scholar 

  2. Bai, E.W.: Frequency domain identification of Wiener models. Automatica 39, 1521–1530 (2003)

    Article  MATH  Google Scholar 

  3. Bai, E.W., Reyland, J.: Towards identification of Wiener systems with the least amount of a priori information on the nonlinearity. Automatica 44, 910–919 (2008)

    MathSciNet  Google Scholar 

  4. Bai, E.W., Reyland, J.: Towards identification of Wiener systems with the least amount of a priori information: IIR cases. Automatica 45(4), 956–964 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bershad, N.J., Bouchired, S., Castanie, F.: Stochastic analysis of adaptive gradient identification of Wiener–Hammerstein systems for Gaussian inputs. IEEE Transactions on Signal Processing 48(2), 557–560 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bershad, N.J., Celka, P., Vesin, J.M.: Analysis of stochastic gradient tracking of time-varying polynomial Wiener systems. IEEE Transactions on Signal Processing 48(6), 1676–1686 (2000)

    Article  MathSciNet  Google Scholar 

  7. Billings, S.A., Fakhouri, S.Y.: Identification of nonlinear systems using the Wiener model. Automatica 13(17), 502–504 (1977)

    Google Scholar 

  8. Billings, S.A., Fakhouri, S.Y.: Identification of systems containing linear dynamic and static nonlinear elements. Automatica 18(1), 15–26 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  9. Celka, P., Bershad, N.J., Vesin, J.M.: Fluctuation analysis of stochastic gradient identification of polynomial Wiener systems. IEEE Transactions on Signal Processing 48(6), 1820–1825 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Celka, P., Bershad, N.J., Vesin, J.M.: Stochastic gradient identification of polynomial Wiener systems: analysis and application. IEEE Transactions on Signal Processing 49(2), 301–313 (2001)

    Article  Google Scholar 

  11. Chen, H.F.: Recursive identification for Wiener model with discontinuous piece-wise linear function. IEEE Transactions on Automatic Control 51(3), 390–400 (2006)

    Article  Google Scholar 

  12. Giri, F., Rochdi, Y., Chaoui, F.Z.: An analytic geometry approach to Wiener system frequency identification. IEEE Transactions on Automatic Control 54(4), 683–696 (2009)

    Article  MathSciNet  Google Scholar 

  13. Giannakis, G.B., Serpedin, E.: A bibliography on nonlinear system identification. Signal Processing 81, 533–580 (2001)

    Article  MATH  Google Scholar 

  14. Greblicki, W.: Nonparametric identification of Wiener systems. IEEE Transactions on Information Theory 38, 1487–1493 (1992)

    Article  MATH  Google Scholar 

  15. Greblicki, W.: Nonparametric identification of Wiener systems by orthogonal series. IEEE Transactions on Automatic Control 39(10), 2077–2086 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  16. Greblicki, W.: Nonparametric approach to Wiener system identification. IEEE Transactions on Circuits and Systems – I: Fundamental Theory and Applications 44(6), 538–545 (1997)

    Article  MathSciNet  Google Scholar 

  17. Greblicki, W.: Continuous-time Wiener system identification. IEEE Transactions on Automatic Control 43(10), 1488–1493 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Greblicki, W.: Recursive identification of Wiener systems. International Journal of Applied Mathematics and Computer Science 11(4), 977–991 (2001)

    MATH  MathSciNet  Google Scholar 

  19. Greblicki, W.: Nonlinearity recovering in Wiener system driven with correlated signal. IEEE Transactions on Automatic Control 49(10), 1805–1810 (2004)

    Article  MathSciNet  Google Scholar 

  20. Greblicki, W., Pawlak, M.: Identification of discrete Hammerstein systems using kernel regression estimates. IEEE Transactions on Automatic Control 31, 74–77 (1986)

    Article  MATH  Google Scholar 

  21. Greblicki, W., Pawlak, M.: Nonparametric System Identification. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  22. Greblicki, W., Mzyk, G.: Semiparametric approach to Hammerstein system identification. In: Proceedings of the 15th IFAC Symposium on System Identification, Saint-Malo, France, July 6-8, pp. 1680–1685 (2009)

    Google Scholar 

  23. Hasiewicz, Z.: Identification of a linear system observed through zero-memory non-linearity. International Journal of Systems Science 18, 1595–1607 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  24. Hasiewicz, Z., Mzyk, G.: Combined parametric-nonparametric identification of Hammerstein systems. IEEE Transactions on Automatic Control 49, 1370–1376 (2004)

    Article  MathSciNet  Google Scholar 

  25. Hasiewicz, Z., Mzyk, G.: Hammerstein system identification by non-parametric instrumental variables. International Journal of Control 82(3), 440–455 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  26. Hasiewicz, Z., Śliwiński, P., Mzyk, G.: Nonlinear system identification under various prior knowledge. In: Proceedings of the 17th World Congress the IFAC, Seoul, Korea, pp. 7849–7858 (2008)

    Google Scholar 

  27. Hagenblad, A., Ljung, L., Wills, A.: Maximum likelihood identification of Wiener models. Automatica 44, 2697–2705 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  28. Hu, X.L., Chen, H.F.: Strong consistence of recursive identification of Wiener systems. Automatica 41, 1905–1916 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  29. Hughes, M.C., Westwick, D.T.: Identification of IIR Wiener systems with spline nonlinearities that have variable knots. IEEE Transactions on Automatic Control 50(10), 1617–1622 (2005)

    Article  MathSciNet  Google Scholar 

  30. Hunter, I.W., Korenberg, M.J.: The identification of nonlinear biological systems: Wiener and Hammerstein cascade models. Biological Cybernetics 55, 135–144 (1986)

    MATH  MathSciNet  Google Scholar 

  31. Korenberg, M.J., Hunter, I.W.: The identification of nonlinear biological systems: LNL cascade models. Biological Cybernetics 55, 125–134 (1986)

    MATH  MathSciNet  Google Scholar 

  32. Lacy, S.L., Bernstein, D.S.: Identification of FIR Wiener systems with unknown, non-invertible, polynomial non-linearities. International Journal of Control 76(15), 1500–1507 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  33. Mzyk, G.: A censored sample mean approach to nonparametric identification of nonlinearities in Wiener systems. IEEE Transactions on Circuits and Systems – II: Express Briefs 54(10), 897–901 (2007)

    Article  Google Scholar 

  34. Mzyk, G.: Generalized kernel regression estimate for the identification of Hammerstein systems. International Journal of Applied Mathematics and Computer Science 17(2), 101–109 (2007)

    Article  MathSciNet  Google Scholar 

  35. Mzyk, G.: Nonlinearity recovering in Hammerstein system from short measurement sequence. IEEE Signal Processing Letters 16(9), 762–765 (2009)

    Article  Google Scholar 

  36. Mzyk, G.: Kernel-type identification of IIR Wiener systems with non-gaussian input. IEEE Transactions on Signal Processing (2010)

    Google Scholar 

  37. Nadaraya, E.A.: On estimating regression. Theory of Probability and its Applications 9, 141–142 (1964)

    Article  Google Scholar 

  38. Pawlak, M., Hasiewicz, Z., Wachel, P.: On nonparametric identification of Wiener systems. IEEE Transactions on Signal Processing 55(2), 482–492 (2007)

    Article  MathSciNet  Google Scholar 

  39. Pupeikis, R.: On the identification of Wiener systems having saturation-like functions with positive slopes. Informatica 16(1), 131–144 (2005)

    MATH  MathSciNet  Google Scholar 

  40. Rafajłowicz, E.: Non-parametric identification with errors in independent variables. International Journal of Systems Science 25(9), 1513–1520 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  41. Vanbeylen, L., Pintelon, R., Schoukens, J.: Blind maximum-likelihood identification of Wiener systems. IEEE Transactions on Signal Processing 57(8), 3017–3029 (2009)

    Article  Google Scholar 

  42. Vandersteen, G., Schoukens, J.: Measurement and identification of nonlinear systems consisting of linear dynamic blocks and one static nonlinearity. IEEE Transactions on Automatic Control 44(6), 1266–1271 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  43. Vörös, J.: Parameter identification of Wiener systems with multisegment piecewise-linear nonlinearities. Systems and Control Letters 56, 99–105 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  44. Wachel, P.: Parametric-Nonparametric Identification of Wiener Systems, PhD Thesis (in Polish) Wrocław University of Technology, Poland (2008), http://diuna.iiar.pwr.wroc.pl/wachel/rozprawa.pdf

  45. Westwick, D., Verhaegen, M.: Identifying MIMO Wiener systems using subspace model identification methods. Signal Processing 52, 235–258 (1996)

    Article  MATH  Google Scholar 

  46. Wiener, N.: Nonlinear Problems in Random Theory. Wiley, New York (1958)

    MATH  Google Scholar 

  47. Wigren, T.: Convergence analysis of recursive identification algorithms based on the nonlinear Wiener model. IEEE Transactions on Automatic Control 39, 2191–2206 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  48. Zhao, Y., Wang, L.Y., Yin, G.G., Zhang, J.F.: Identification of Wiener systems with binary-valued output observations. Automatica 43, 1752–1765 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer London

About this chapter

Cite this chapter

Mzyk, G. (2010). Parametric Versus Nonparametric Approach to Wiener Systems Identification. In: Giri, F., Bai, EW. (eds) Block-oriented Nonlinear System Identification. Lecture Notes in Control and Information Sciences, vol 404. Springer, London. https://doi.org/10.1007/978-1-84996-513-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-513-2_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-512-5

  • Online ISBN: 978-1-84996-513-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics