Skip to main content

Block Structured Modelling in the Study of the Stretch Reflex

  • Chapter
  • 3325 Accesses

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 404))

Abstract

Nonlinear system identification has a long history in several disciplines related to biomedical engineering. Much of this can be credited to the seminal textbook written by Marmarelis and Marmarelis [25], which popularised the use of the cross-correlation method for estimating the Wiener kernels of a system driven by a white Gaussian noise input [24]. This, together with the rapidly evolving capabilities of the digital computers of the day, gave a large number of researchers the tools to investigate a wide variety of nonlinear dynamical systems, particularly in the area of sensory physiology. More recent developments have been summarised in a series of multiple-author research volumes [26, 27, 28], and two recent textbooks [29, 43].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bai, E.: Identification of linear systems with hard input nonlinearities of known structure. Automatica 38, 853–860 (2002)

    Article  MATH  Google Scholar 

  2. Beckmann, P.: Orthogonal Polynomials for Engineers and Physicists. The Golem Press, Boulder (1973)

    MATH  Google Scholar 

  3. de Boor, C.D.: A practical guide to splines, Applied Mathematical Sciences, vol. 27. Springer, New York (1978)

    Google Scholar 

  4. Boyd, S., Chua, L.: Fading memory and the problem of approximating nonlinear operators with Volterra series. IEEE Trans. Circuits Syst. CAS 32(11), 1150–1161 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bussgang, J.: Crosscorrelation functions of amplitude-distorted Gaussian signals. Tech. Rep. 216, MIT Electrical Research Lab (1952)

    Google Scholar 

  6. Chang, F., Luus, R.: A noniterative method for identification using Hammerstein model. IEEE Trans. Autom. Control 16, 464–468 (1971)

    Article  Google Scholar 

  7. Chen, W., Poppele, R.: Static fusimotor effect on the sensitivity of mammalian muscle spindles. Brain Res. 57, 244–247 (1973)

    Article  Google Scholar 

  8. Dempsey, E., Westwick, D.: Identification of Hammerstein models with cubic spline nonlinearities. IEEE Trans. Biomed. Eng. 51, 237–245 (2004)

    Article  Google Scholar 

  9. Eggermont, J.: Wiener and Volterra analyses applied to the auditory system. Hearing Res 66, 177–201 (1993)

    Article  Google Scholar 

  10. Emerson, R., Korenberg, M., Citron, M.: Identification of intensive nonlinearities in cascade models of visual cortex and its relation to cell classification. In: [27], pp. 97–111 (1989)

    Google Scholar 

  11. Emerson, R., Korenberg, M., Citron, M.: Identification of complex-cell intensive nonlinearities in a cascade model of cat visual cortex. Biol. Cybern. 66, 291–300 (1992)

    Article  Google Scholar 

  12. French, A., Korenberg, M.: A nonlinear cascade model for action potential encoding in an insect sensory neuron. Biophys. J. 55, 655–661 (1989)

    Article  Google Scholar 

  13. French, A., Korenberg, M.: Disection of a nonlinear cascade model for sensory encoding. Ann. Biomed. Eng. 19, 473–484 (1991)

    Article  Google Scholar 

  14. Golub, G., Pereyra, V.: The differentiation of pseudo-inverses and nonlinear least squares problems whose variables separate. SIAM J. Numer. Anal. 10(2), 413–432 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hunter, I., Kearney, R.: Two-sided linear filter identification. Med. Biol. Eng. Comput. 21, 203–209 (1983)

    Article  Google Scholar 

  16. Hunter, I., Kearney, R.: Quasi-linear, time-varying, and nonlinear approaches to the identification of muscle and joint mechanics. In: [26], pp. 128–147 (1987)

    Google Scholar 

  17. Hunter, I., Korenberg, M.: The identification of nonlinear biological systems: Wiener and Hammerstein cascade models. Biol. Cybern. 55, 135–144 (1986)

    MATH  MathSciNet  Google Scholar 

  18. Kearney, R., Hunter, I.: System identification of human triceps surae stretch reflex dynamics. Exp. Brain Res. 51, 117–127 (1983)

    Article  Google Scholar 

  19. Kearney, R., Hunter, I.: Nonlinear identification of stretch reflex dynamics. Ann. Biomed. Eng. 16, 79–94 (1988)

    Article  Google Scholar 

  20. Kearney, R., Stein, R., Parameswaran, L.: Identification of intrinsic and reflex contributions to human ankle stiffness dynamics. IEEE Trans. Biomed. Eng. 44(6), 493–504 (1997)

    Article  Google Scholar 

  21. Korenberg, M.: Identifying nonlinear difference equation and functional expansion representations: The fast orthogonal algorithm. Ann. Biomed. Eng. 16, 123–142 (1988)

    Article  Google Scholar 

  22. Korenberg, M., Hunter, I.: The identification of nonlinear biological systems: LNL cascade models. Biol. Cybern. 55, 125–134 (1986)

    MATH  MathSciNet  Google Scholar 

  23. Korenberg, M., Hunter, I.: Two methods for identifying Wiener cascades having noninvertible static nonlinearities. Ann. Biomed. Eng. 27(6), 793–804 (1999)

    Article  Google Scholar 

  24. Lee, Y., Schetzen, M.: Measurement of the Wiener kernels of a non-linear system by cross-correlation. Int. J. Control 2, 237–254 (1965)

    Article  Google Scholar 

  25. Marmarelis, P., Marmarelis, V.: Analysis of Physiological Systems. Plenum Press, New York (1978)

    Google Scholar 

  26. Marmarelis, V. (ed.): Advanced Methods of Physiological System Modelling. Biomedical Simulations Resource, USC-LA, Los Angeles, vol. 1 (1987)

    Google Scholar 

  27. Marmarelis, V. (ed.): Advanced Methods of Physiological System Modeling, vol. 2. Plenum Press, New York (1989)

    Google Scholar 

  28. Marmarelis, V. (ed.): Advanced Methods of Physiological System Modeling, vol. 3. Plenum Press, New York (1994)

    Google Scholar 

  29. Marmarelis, V.: Nonlinear Dynamic Modeling of Physiological Systems. IEEE Press, Piscataway (2004)

    Google Scholar 

  30. Mirbagheri, M., Barbeau, H., Kearney, R.: Intrinsic and reflex contributions to human ankle stiffness: variation with activation level and position. Exp. Brain Res. 135, 423–436 (2000)

    Article  Google Scholar 

  31. Mirbagheri, M., Barbeau, H., Ladouceur, M., Kearney, R.: Intrinsic and reflex stiffness in normal and spastic, spinal cord injured subjects. Exp. Brain Res. 141, 446–459 (2001)

    Article  Google Scholar 

  32. Mirbagheri, M., Alibiglou, L., Thajchayapong, M., Rymer, W.: Muscle and reflex changes with varying joint angle in hemiparetic stroke. J. NeuroEng. and Rehabil. 5(1), 6 (2008)

    Article  Google Scholar 

  33. Naka, K.I., Sakai, H., Naohiro, I.: Generation and transformation of second-order nonlinearity in catfish retina. Ann. Biomed. Eng. 16, 53–64 (1988)

    Article  Google Scholar 

  34. Narendra, K., Gallman, P.: An iterative method for the identification of nonlinear systems using a Hammerstein model. IEEE Trans. Autom. Control AC 11, 546–550 (1966)

    Article  Google Scholar 

  35. Paulin, M.: A method for constructing data-based models of spiking neurons using a dynamic linear-static nonlinear cascade. Biol. Cybern. 69, 67–76 (1993)

    Article  MATH  Google Scholar 

  36. Ruhe, A., Wedin, P.: Algorithms for separable nonlinear least squares problems. SIAM Rev. 22(3), 318–337 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  37. Sakuranaga, M., Ando, Y.I., Naka, K.I.: Signal transmission in the catfish retina. I. transmission in the outer retina. J. Neurophysiology 53, 373–389 (1985)

    Google Scholar 

  38. Sakuranaga, M., Ando, Y.I., Naka, K.I.: Signal transmission in the catfish retina. II. transmission to type N cell. J. Neurophysiology 53, 390–410 (1985)

    Google Scholar 

  39. Sakuranaga, M., Ando, Y.I., Naka, K.I.: Signal transmission in the catfish retina. III. transmission to type C cell. J. Neurophysiology 53, 411–428 (1985)

    Google Scholar 

  40. Sjöberg, J., Viberg, M.: Separable non-linear least squares minimization – possible improvements for neural net fitting. In: IEEE Workshop on Neural Networks for Signal Processing, vol. 7, pp. 345–354 (1997)

    Google Scholar 

  41. Westwick, D., Kearney, R.: Separable least squares identification of a parallel cascade model of human ankle stiffness. In: Proc. IEEE EMBS Conf., Istanbul, Turkey, vol. 23, pp. 1282–1285 (2001)

    Google Scholar 

  42. Westwick, D., Kearney, R.: Separable least squares identification of nonlinear Hammerstein models: Application to stretch reflex dynamics. Ann. Biomed. Eng. 29(8), 707–718 (2001)

    Article  Google Scholar 

  43. Westwick, D., Kearney, R.: Identification of Nonlinear Physiological Systems. IEEE Press Series in Biomedical Engineering. IEEE Press / Wiley, Piscataway (2003)

    Book  Google Scholar 

  44. Westwick, D., Perreault, E.: Identification of apparently a-causal stiffness models. In: Proc. IEEE EMBS Conf., vol. 27, pp. 5611–5614 (2005)

    Google Scholar 

  45. Wiener, N.: Nonlinear problems in random theory. Technology Press Research Monographs. Wiley, New York (1958)

    MATH  Google Scholar 

  46. Zhang, L., Rymer, W.: Simultaneous and nonlinear identification of mechanical and reflex properties of human elbow joint muscles. IEEE Trans. Biomed. Eng. 44(12), 1192–1209 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer London

About this chapter

Cite this chapter

Westwick, D.T. (2010). Block Structured Modelling in the Study of the Stretch Reflex. In: Giri, F., Bai, EW. (eds) Block-oriented Nonlinear System Identification. Lecture Notes in Control and Information Sciences, vol 404. Springer, London. https://doi.org/10.1007/978-1-84996-513-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-513-2_23

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-512-5

  • Online ISBN: 978-1-84996-513-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics