Skip to main content

Stochastic Modeling

  • Chapter

Part of the book series: Computational Biology ((COBO,volume 16))

Abstract

This chapter provides an introduction to the concepts underlying the stochastic modeling of biological systems with Petri Nets. It introduces a timed interpretation of the occurrence of transitions in a net that suites the randomness observed in biochemical reactions occurring in living matter. Thanks to the foundational work of Gillespie in the 70s, this randomness can be easily accounted for by the representative power of Stochastic Petri Nets. The chapter illustrates the Stochastic Petri Net model specification process, the possibilities of analytical and numerical evaluation of model dynamics as well as the basic concepts underlying the simulative approaches, through the application to simple instances of biological systems to help the reader familiarizing with this discrete stochastic modeling formalism. Additional examples of larger scale models are presented, and exercises suggested to consolidate the understanding of the main concepts.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The very useful closure property of statistically independent negative exponential random variables under the minimum operator is easily demonstrated. Suppose X and Y are negative exponential random variables of rate λ X and λ Y , respectively, and let the random variable Z to be defined as Z=MIN{X,Y}. Then, the cumulative density function F Z (t) of Z can be computed as \(F_{Z}(t)=\mathbb{P}[Z\leq t]=1-\mathbb{P}[Z>t]=1-\mathbb{P}[\mathrm{MIN}\{X,Y\}>t]=1- \mathbb{P}[X>t,Y>t]=1-\mathbb{P}[X>t]\mathbb{P}[Y>t]=1-e^{-\lambda_{X}}e^{-\lambda_{Y}}=1-e^{-(\lambda_{X}+\lambda_{Y})}\), which is the same as to say that Z is distributed as a negative exponential random variable of parameter λ X +λ Y .

References

  1. Alexopoulos, C.: Statistical analysis of simulation output: state of the art. In: WSC’07: Proceedings of the 39th conference on Winter simulation, pp. 150–161. IEEE Press, New York (2007)

    Google Scholar 

  2. Arkin, A.J., Ross, J., McAdams, H.H.: Gene Ontology: tool for the unification of biology. Genetics 149(4), 1633–1648 (1998)

    Google Scholar 

  3. Bahi-Jaber, N., Pontier, D.: Modeling transmission of directly transmitted infectious diseases using colored stochastic Petri nets. Math. Biosci. 185(1), 1–13 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cao, Y., Li, H., Petzold, L.: Efficient formulation of the stochastic simulation algorithm for chemically reacting systems. J. Chem. Phys. 121(9), 4059–4067 (2004)

    Article  Google Scholar 

  5. Chiola, G., Dutheillet, C., Franceschinis, G., Haddad, S.: Stochastic well-formed colored nets and symmetric modeling applications. IEEE Trans. Comput. 42(11), 1343–1360 (1993)

    Article  Google Scholar 

  6. Chiola, G., Franceschinis, G., Gaeta, R., Ribaudo, M.: Greatspn 1.7: Graphical editor and analyzer for timed and stochastic Petri nets. Perform. Eval. 24, 47–68 (1995)

    Article  MATH  Google Scholar 

  7. Ciardo, G., Muppala, J.K., Trivedi, K.S.: Stochastic Petri net package. In: Intern. Workshop on Petri Nets and Performance Models (PNPM’89), pp. 142–151 (1989)

    Google Scholar 

  8. Clark, G., Courtney, T., Daly, D., Deavours, D., Derisavi, S., Doyle, J.M., Sanders, W.H., Webster, P.: The Möbius modeling tool. In: Intern. Workshop on Petri Nets and Performance Models (PNPM’01), pp. 241–250 (2001)

    Google Scholar 

  9. Doob, J.L.: Stochastic Processes. Wiley, New York (1953)

    MATH  Google Scholar 

  10. Gibson, M.A., Bruck, J.: Efficient exact stochastic simulation of chemical systems with many species and many channels. J. Phys. Chem. 104(9), 1876–1889 (2000)

    Article  Google Scholar 

  11. Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22(4), 403–434 (1976)

    Article  MathSciNet  Google Scholar 

  12. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)

    Article  Google Scholar 

  13. Goss, P.J.E., Peccoud, J.: Quantitative modeling of stochastic systems in molecular biology by using stochastic Petri nets. Proc. Natl. Acad. Sci. USA. 95(12), 6750–6755 (1998)

    Article  Google Scholar 

  14. Goss, P.J.E., Peccoud, J.: Analysis of the stabilizing effect of Rom on the genetic network controlling ColE1 plasmid replication. Proc. Pac. Symp. Biocomput. 4, 65–76 (1999)

    Google Scholar 

  15. Gross, D., Miller, D.R.: The randomization technique as a modeling tool and solution procedure for transient Markov processes. Oper. Res. 32(2), 343–361 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hardy, S., Robillard, P.N.: Modeling and simulation of molecular biology systems using Petri nets: modeling goals of various approaches. J. Bioinform. Comput. Biol. 2(4), 619–637 (2004)

    Article  Google Scholar 

  17. Heiner, M., Gilbert, D., Donaldson, R.: Petri nets for systems and synthetic biology. In: Formal Methods for Computational Systems Biology. LNCS, vol. 5016, pp. 215–264. Springer, Berlin (2008)

    Chapter  Google Scholar 

  18. Heiner, M., Lehrack, S., Gilbert, D., Marwan, W.: Extended stochastic Petri nets for modelbased design of wetlab experiments. In: Computational Models for Cell Processes. Transactions on Computational Systems Biology XI. LNCS, vol. 5750, pp. 138–163. Springer, Berlin (2009)

    Google Scholar 

  19. Hitchcock, S.E.: Extinction probabilities in predator-prey models. J. Appl. Probab. 23(1), 1–13 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lotka, A.J.: Undamped oscillations derived from the laws of mass action. J. Am. Chem. Soc. 42, 1595–1599 (1920)

    Article  Google Scholar 

  21. Marsan, A.M., Conte, G., Balbo, G.: A class of generalized stochastic Petri nets for the performance evaluation of multiprocessor systems. ACM Trans. Comput. Syst. 2(2), 93–122 (1984)

    Article  Google Scholar 

  22. Marwan, W., Sujatha, A., Starostzik, C.: Reconstructing the regulatory network controlling commitment and sporulation in physarum polycephalum based on hierarchical petri net modelling and simulation. J. Theor. Biol. 236(4), 349–365 (2005)

    Article  Google Scholar 

  23. McColluma, J.M., Peterson, G.D., Cox, C.D., Simpson, M.L., Samatova, N.F.: The sorting direct method for stochastic simulation of biochemical systems with varying reaction execution behavior. Comput. Biol. Chem. 30(1), 29–39 (2006)

    Google Scholar 

  24. Meyer, J.F., Movaghar, A., Sanders, W.H.: Stochastic Activity Networks: Structure, Behavior, and Application. In: International Workshop on Timed Petri Nets, pp. 106–115. IEEE Comput. Soc., Los Alamitos (1985)

    Google Scholar 

  25. Molloy, M.K.: Performance analysis using stochastic Petri nets. IEEE Trans. Comput. 31(9), 913–917 (1982)

    Article  Google Scholar 

  26. Muppala, J.K., Ciardo, G., Trivedi, K.S.: Stochastic reward nets for reliability prediction. In: Communications in Reliability, Maintainability and Serviceability, pp. 9–20 (1994)

    Google Scholar 

  27. Mura, I., Csiksz-Nagy, A.: Stochastic Petri Net extension of a yeast cell cycle model. J. Theor. Biol. 254(4), 850–860 (2008)

    Article  Google Scholar 

  28. Peleg, M., Rubin, D., Altman, R.B.: Using Petri net tools to study properties and dynamics of biological systems. J. Am. Med. Inform. Assoc. 12(2), 181–199 (2005)

    Article  Google Scholar 

  29. Srivastava, R., Peterson, M.S., Bentley, W.E.: Stochastic kinetic analysis of the Escherichia coli stress circuit using σ−32 targeted antisense. Biotechnol. Bioeng. 75(1), 120–129 (2001)

    Article  Google Scholar 

  30. Tsavachidou, D., Liebman, M.N.: Modeling and simulation of pathways in menopause. J. Am. Med. Inform. Assoc. 9(5), 461–471 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Mura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Mura, I. (2011). Stochastic Modeling. In: Koch, I., Reisig, W., Schreiber, F. (eds) Modeling in Systems Biology. Computational Biology, vol 16. Springer, London. https://doi.org/10.1007/978-1-84996-474-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-474-6_7

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-473-9

  • Online ISBN: 978-1-84996-474-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics