Skip to main content

A Modular, Qualitative Modeling of Regulatory Networks Using Petri Nets

  • Chapter

Part of the book series: Computational Biology ((COBO,volume 16))

Abstract

Advances in high-throughput technologies have enabled the delineation of large networks of interactions that control cellular processes. To understand behavioral properties of these complex networks, mathematical and computational tools are required. The multi-valued logical formalism, initially defined by Thomas and coworkers, proved well adapted to account for the qualitative knowledge available on regulatory interactions, and also to perform analyses of their dynamical properties. In this context, we present two representations of logical models in terms of Petri nets. In a first step, we briefly show how logical models of regulatory networks can be transposed into standard (place/transition) Petri nets, and discuss the capabilities of such a representation. In the second part, we focus on logical regulatory modules and their composition, demonstrating that a high-level Petri net representation greatly facilitates the modeling of interconnected modules. Doing so, we introduce an explicit means to integrate signals from various interconnected modules, taking into account their spatial distribution. This provides a flexible modeling framework to handle regulatory networks that operate at both intra- and intercellular levels. As an illustration, we describe a simplified model of the segment-polarity module involved in the segmentation of the Drosophila embryo.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    A multigraph is a graph with possibly several edges between a pair of nodes.

References

  1. Agapakis, C., Silver, P.: Synthetic biology: exploring and exploiting genetic modularity through the design of novel biological networks. Mol. Biosyst. 7(5), 704–713 (2009)

    Article  Google Scholar 

  2. Albert, R., Othmer, H.G.: The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in drosophila melanogaster. J. Theor. Biol. 223(1), 1–18 (2003)

    Article  MathSciNet  Google Scholar 

  3. Basu, S., Gerchman, Y., Collins, C.H., Arnold, F.H., Weiss, R.: A synthetic multicellular system for programmed pattern formation. Nature 434(7037), 1130–1134 (2005)

    Article  Google Scholar 

  4. Bause, F., Kemper, P., Kritzinger, P.: Abstract Petri net notation. Forschungsbericht 563, Fachbereichs Informatik, Universität Dortmund (Germany) (1994). Also in: Petri Net Newsletter 49, 9–27 (1995)

    Google Scholar 

  5. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Trans. Comput. 35(8), 677–691 (1986)

    Article  MATH  Google Scholar 

  6. Chaouiya, C., Remy, E., Mossé, B., Thieffry, D.: Qualitative analysis of regulatory graphs: a computational tool based on a discrete formal framework. LNCIS 294, 119–126 (2003)

    Google Scholar 

  7. Chaouiya, C., Remy, E., Ruet, P., Thieffry, D.: Qualitative modelling of genetic networks: from logical regulatory graphs to standard Petri nets. In: LNCS, vol. 3099, pp. 137–156. Springer, Berlin (2004)

    Google Scholar 

  8. Chaouiya, C., Remy, E., Thieffry, D.: Qualitative Petri net modelling of genetic networks. In: Trans. Comp. Syst. Biol. VI. LNCS, vol. 4220, pp. 95–112. Springer, Berlin (2006)

    Chapter  Google Scholar 

  9. Chaouiya, C., Remy, E., Thieffry, D.: Petri net modelling of biological regulatory networks. J. Discret. Algorithms 6(2), 165–177 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chaouiya, C., Naldi, A., Remy, E., Thieffry, D.: Petri net representation of multi-valued logical regulatory networks. Nat. Comput. (2010). doi:10.1007/s1104-010-9178-0

  11. Chaves, M., Albert, R., Sontag, E.D.: Robustness and fragility of boolean models for genetic regulatory networks. J. Theor. Biol. 235(3), 431–449 (2005)

    Article  MathSciNet  Google Scholar 

  12. Comet, J.-P., Klaudel, H., Liauzu, S.: Modeling multi-valued genetic regulatory networks using high-level Petri nets. In: LNCS, vol. 3536, pp. 208–227. Springer, Berlin (2005)

    Google Scholar 

  13. von Dassow, G., Odell, G.M.: Design and constraints of the drosophila segment polarity module: robust spatial patterning emerges from intertwined cell state switches. J. Exp. Zool. 294(3), 179–215 (2002)

    Article  Google Scholar 

  14. Drubin, D.A., Way, J.C., Silver, P.A.: Designing biological systems. Genes Dev. 21(3), 242–254 (2007)

    Article  Google Scholar 

  15. DSSZ-MC: Tools for the symbolic analysis of bounded Petri nets. http://www-dssz.informatik.tu-cottbus.de/index.html?/software/mc.html

  16. Elowitz, M.B., Leibler, S.: A synthetic oscillatory network of transcriptional regulators. Nature 403(6767), 335–338 (2000)

    Article  Google Scholar 

  17. Fauré, A., Naldi, A., Chaouiya, C., Thieffry, D.: Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle. Bioinformatics 22(14), 124–131 (2006)

    Article  Google Scholar 

  18. Fauré, A., Naldi, A., Chaouiya, C., Ciliberto, A., Thieffry, D.: Modular logical modelling of the budding yeast cell cycle. Mol. Biosyst. 5, 1787–1796 (2009)

    Article  Google Scholar 

  19. Gilbert, S.F.: Developmental Biology, 8th edn. Sinauer, Sunderland (2006)

    Google Scholar 

  20. GINsim: Gene Interaction Network simulation, http://gin.univ-mrs.fr/GINsim

  21. INA: Integrated Net Analyzer, http://www2.informatik.hu-berlin.de/~starke/ina.html

  22. Ingolia, N.T.: Topology and robustness in the drosophila segment polarity network. PLoS Biol. 2(6), e123 (2004)

    Article  Google Scholar 

  23. de Jong, H.: Modeling and simulation of genetic regulatory systems: a literature review. J. Computat. Biol. 9, 67–103 (2002)

    Article  Google Scholar 

  24. Kam, T., Villa, T., Brayton, R.K., Sangiovanni-Vincentelli, A.L.: Multi-valued decision diagrams: theory and applications. Int. J. Multiple-Valued Logic 4, 9–62 (1998)

    MathSciNet  MATH  Google Scholar 

  25. Kauffman, S.: Metabolic stability and epigenesis in randomly constructed genetics nets. J. Theor. Biol. 22, 437–467 (1969)

    Article  MathSciNet  Google Scholar 

  26. Klaudel, H., Pommereau, F.: M-nets: a survey. Acta Inform. 45, 537–564 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mendoza, L.: A network model for the control of the differentiation process in Th cells. Biosystems 84(2), 101–114 (2006)

    Article  Google Scholar 

  28. Mirschel, S., Steinmetz, K., Rempel, M., Ginkel, M., Gilles, E.D.: ProMoT: ModularModeling for Systems Biology. Bioinformatics 25(5), 687–689 (2009)

    Article  Google Scholar 

  29. Naldi, A., Thieffry, D., Chaouiya, C.: Decision diagrams for the representation of logical models of regulatory networks. In: LNBI, vol. 4695, pp. 233–247. Springer, Berlin (2007)

    Google Scholar 

  30. Naldi, A., Berenguier, D., Fauré, A., Lopez, F., Thieffry, D., Chaouiya, C.: Logical modelling of regulatory networks with GINsim 2.3. Biosystems 97(2), 134–139 (2009)

    Article  Google Scholar 

  31. Naldi, A., Remy, E., Thieffry, D., Chaouiya, C.: A reduction of logical regulatory graphs preserving essential dynamical properties. In: LNBI, vol. 5688, pp. 266–280. Springer, Berlin (2009)

    Google Scholar 

  32. PNML.org: The reference site for the Petri Net Markup Language. http://www.pnml.org/

  33. Pommereau, F.: Quickly prototyping Petri nets tools with SNAKES. ACM Digital Library, pp. 1–10, ACM (2008)

    Google Scholar 

  34. Python Software Foundation: Python programming language. http://www.python.org

  35. Saez-Rodriguez, J., Simeoni, L., Lindquist, J.A., Hemenway, R., Bommhardt, U., Arndt, B., Haus, U.U., Weismantel, R., Gilles, E.D., Klamt, S., Schraven, B.: A logical model provides insights into T cell receptor signaling. PLoS Comput. Biol. 3(8), e163 (2007)

    Article  MathSciNet  Google Scholar 

  36. Sánchez, L., Thieffry, D.: A logical analysis of the Drosophila gap-gene system. J. Theor. Biol. 211(2), 115–141 (2001)

    Article  Google Scholar 

  37. Sánchez, L., Thieffry, D.: Segmenting the fly embryo: a logical analysis of the pair-rule cross-regulatory module. J. Theor. Biol. 224(4), 517–537 (2003)

    Article  Google Scholar 

  38. Sánchez, L., Chaouiya, C., Thieffry, D.: Segmenting the fly embryo: a logical analysis of the segment polarity cross-regulatory module. Int. J. Dev. Biol. 52(8), 1059–1075 (2008)

    Article  Google Scholar 

  39. Schlitt, T., Brazma, A.: Current approaches to gene regulatory network modelling. BMC Bioinform. 8(Suppl. 6), S9 (2007)

    Article  Google Scholar 

  40. Shaffer, C.A., Randhawa, R., Tyson, J.J.: The role of composition and aggregation in modeling macromolecular regulatory networks. In: Proc. of the Winter Simulation Conf., pp. 1628–1636 (2006)

    Google Scholar 

  41. Simão, E., Remy, E., Thieffry, D., Chaouiya, C.: Qualitative modelling of regulated metabolic pathways: application to the tryptophan biosynthesis in E. Coli. Bioinformatics 21(2), ii190–ii196 (2005)

    Article  Google Scholar 

  42. Steggles, L.J., Banks, R., Shaw, O., Wipat, A.: Qualitatively modelling and analysing genetic regulatory networks: a Petri net approach. Bioinformatics 23(3), 336–343 (2007)

    Article  Google Scholar 

  43. Strehl, K., Thiele, L.: Interval diagrams for efficient symbolic verification of process networks. IEEE Trans.-Comput., Aided Des. Integr. Circuits Syst. 19(8), 939–956 (2000)

    Article  Google Scholar 

  44. Thomas, R.: Boolean formalisation of genetic control circuits. J. Theor. Biol. 42, 565–583 (1973)

    Article  Google Scholar 

  45. Thomas, R., D’Ari, R.: Biological Feedback. CRC Press, Boca Raton (1990)

    MATH  Google Scholar 

  46. Thomas, R.: Regulatory networks seen as asynchronous automata: a logical description. J. Theor. Biol. 153, 1–23 (1991)

    Article  Google Scholar 

  47. Thomas, R., Thieffry, D., Kaufman, M.: Dynamical behaviour of biological regulatory networks, I. Biological role of feedback loops and practical use of the concept of the loop-characteristic state. Bull. Math. Biol. 57, 247–276 (1995)

    MATH  Google Scholar 

  48. TINA: TIme petri Net Analyzer, http://www.laas.fr/tina/

  49. Wolpert, L., Beddington, R., Brockes, J., Jessell, T., Lawrence, P., Meyerowitz, E.: Principles of Development, 3rd edn. Oxford University Press, London (2006)

    Google Scholar 

Download references

Acknowledgements

We thank G. Batt, A. Naldi, E. Remy, S. Soliman, D. Thieffry for fruitful discussions. This work was supported by the French Research Agency (project ANR-08-SYSC-003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudine Chaouiya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Chaouiya, C., Klaudel, H., Pommereau, F. (2011). A Modular, Qualitative Modeling of Regulatory Networks Using Petri Nets. In: Koch, I., Reisig, W., Schreiber, F. (eds) Modeling in Systems Biology. Computational Biology, vol 16. Springer, London. https://doi.org/10.1007/978-1-84996-474-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-474-6_12

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-473-9

  • Online ISBN: 978-1-84996-474-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics